

New Results in Strangeness Production with Polarization Observables

NSTAR 2019

D.G. Ireland 13 June, 2019

Light Baryon Spectrum - PDG 1996¹ List of N^{*} Resonances

¹R.M. Barnett et al. In: *Phys. Rev. D* 54 (1996), p. 1.

Resonance Hunting

Resonances found from πN scattering...

Coupling to other channels²?

²Simon Capstick and W. Roberts. "Strange decays of nonstrange baryons". In: *Phys. Rev. D* 58 (1998), p. 074011.

Kaon Photoproduction

Kaon Photoproduction - KA Experimental Database

Accumulated $K\Lambda$ data points

Recent Experimental Data

Data also from ELSA, GRAAL, LEPS, MAMI,...

Kaon Photoproduction - $K\Lambda$ example

$\gamma p \rightarrow K^+ \Lambda$: Cross-sections and Recoil Polarizations³

³M. E. McCracken et al. "Differential cross section and recoil polarization measurements for the $\gamma p \rightarrow K^+ \Lambda$ reaction using CLAS at Jefferson Lab". In: *Physical Review C* 81 (2010), p. 025201.

$\gamma p \rightarrow K^+ \Lambda$: Circular Beam-Recoil Observables⁴

⁴RK Bradford et al. "First measurement of beam-recoil observables C_x and C_z in hyperon photoproduction". In: *Physical Review C* 75.3 (2007), p. 035205.

$\gamma p ightarrow K^+ \Lambda$: Beam Asymmetry⁵

 $^5C.$ A. Paterson et al. "Photoproduction of A and Σ^0 hyperons using linearly polarized photons". In: Phys. Rev. C 93 (2016), p. 065201.

$\gamma p \rightarrow K^+ \Lambda$: Comparison with Models

- Data Points: CLAS results;
- Red: ANL-Osaka calculations⁶ (prediction);
- Green: Bonn-Gatchina 2014 fit⁷ (BG2014-02, prediction);
- Blue: Bonn-Gatchina full re-fit with CLAS results;

⁶H. Kamano et al. "Nucleon resonances within a dynamical coupled-channels model of πN and γN reactions". In: *Phys. Rev. C* 88 (2013), p. 035209.

⁷E. Gutz et al. "High statistics study of the reaction $\gamma p \rightarrow p \pi^0 \eta$ ". In: *Eur. Phys. J.* A 50 (2014), pp. 1–27.

⁸A. V. Anisovich et al. "Strong Evidence for Nucleon Resonances near 1900 MeV".
 In: Phys. Rev. Lett. 119.6 (2017), p. 062004.

$\gamma p \rightarrow K^+ \Lambda$: Jülich-Bonn Coupled Channels⁹

⁹D. Rönchen, M. Döring, and U. -G. Meißner. "The impact of $K + \Lambda$ photoproduction on the resonance spectrum". In: *Eur. Phys. J. A* 54 (2018), p. 110.

Light Baryon Spectrum - PDG 2018¹⁰ List of N^{*} Resonances

¹⁰(Particle Data Group) Tanabashi, M. et al. "Review of Particle Physics". In: *Phys. Rev. D* 98.3 (Aug. 2018), p. 030001.

The Recent **BESIII** Result

Letter | Published: 06 May 2019

Polarization and entanglement in baryonantibaryon pair production in electronpositron annihilation

The BESIII Collaboration

¹¹M. Ablikim et al. "Polarization and entanglement in baryon-antibaryon pair production in electron-positron annihilation". In: *Nature Physics* (May 2019), p. 1.

$\Lambda\bar{\Lambda}$ Production

 $\Lambda\bar{\Lambda}$ production process.

$$egin{aligned} \mathcal{W}(\xi;lpha_\psi,\Delta\Phi,lpha_-,lpha_+)\ &=1+lpha_\psi\cos^2 heta_\Lambda+lpha_-lpha_+\left[\sin^2 heta_\Lambda\left(n_{1,x}n_{2,x}-lpha_\psi n_{1,y}n_{2,y}
ight)\ &+\left(\cos^2 heta_\Lambda+lpha_\psi
ight)n_{1,z}n_{2,z}
ight]\ &+lpha_-lpha_+\sqrt{1-lpha_\psi^2}\cos(\Delta\Phi)\sin heta_\Lambda\cos heta_\Lambda\left(n_{1,x}n_{2,z}+n_{1,z}n_{2,x}
ight)\ &+\sqrt{1-lpha_\psi^2}\sin(\Delta\Phi)\,\sin heta_\Lambda\cos heta_\Lambda\left(lpha_-n_{1,y}+lpha_+n_{2,y}
ight) \end{aligned}$$

 $\Lambda\bar{\Lambda}$ intensity distribution

$\Lambda\bar{\Lambda}$ Production

Polarization signal...

Table 1 | Summary of the results

Parameters	ameters This work Previous results	
$lpha_{\psi}$	$0.461 \pm 0.006 \pm 0.007$	0.469±0.027 (ref. ¹⁴)
$\Delta \Phi$	$42.4 \pm 0.6 \pm 0.5^{\circ}$	-
α_	$0.750 \pm 0.009 \pm 0.004$	0.642±0.013 (ref. 6)
α_+	$-0.758 \pm 0.010 \pm 0.007$	-0.71±0.08 (ref. 6)
$\overline{\alpha}_0$	$-0.692 \pm 0.016 \pm 0.006$	-
A _{CP}	$-0.006 \pm 0.012 \pm 0.007$	0.006 ± 0.021 (ref. ⁶)
$\overline{\alpha}_0/\alpha_+$	$0.913 \pm 0.028 \pm 0.012$	-

Table 1 | Summary of the results

Parameters	This work	Previous results	
$lpha_{arphi}$	$0.461 \pm 0.006 \pm 0.007$	0.469 ± 0.027 (ref. ¹⁴)	
$\Delta \Phi$	$42.4 \pm 0.6 \pm 0.5^{\circ}$	-	
α_	$0.750 \pm 0.009 \pm 0.004$	0.642 ± 0.013 (ref. ⁶)	
α_+	$-0.758 \pm 0.010 \pm 0.007$	-0.71±0.08 (ref. 6)	
$\overline{\alpha}_0$	$-0.692 \pm 0.016 \pm 0.006$	-	
A _{CP}	$-0.006 \pm 0.012 \pm 0.007$	0.006 ± 0.021 (ref. ⁶)	
$\overline{\alpha}_0/\alpha_+$	$0.913 \pm 0.028 \pm 0.012$	-	

Table 1 Summary of the results			
Parameters	This work	Previous results	
$lpha_\psi$	$0.461 \pm 0.006 \pm 0.007$	0.469±0.027 (ref. ¹⁴)	
$\Delta \Phi$	$42.4 \pm 0.6 \pm 0.5^{\circ}$	-	
α_	$0.750 \pm 0.009 \pm 0.004$	0.642 ± 0.013 (ref. ⁶)	
α_+	$-0.758 \pm 0.010 \pm 0.007$	-0.71±0.08 (ref. 6)	
$\overline{\alpha}_0$	$-0.692 \pm 0.016 \pm 0.006$	-	
A _{CP}	$-0.006 \pm 0.012 \pm 0.007$	0.006 ± 0.021 (ref. 6)	
$\overline{\alpha}_0/\alpha_+$	$0.913 \pm 0.028 \pm 0.012$	-	

 $> 5\sigma$ difference between new result and PDG¹².

¹²(Particle Data Group) Tanabashi, M. et al. "Review of Particle Physics". In: *Phys. Rev. D* 98.3 (Aug. 2018), p. 030001.

So What?

$p\bar{p} \rightarrow \Lambda \bar{\Lambda}$ Polarization¹³

¹³E. Klempt et al. "Antinucleon nucleon interaction at low energy: Scattering and protonium". In: *Phys. Rept.* 368 (2002), pp. 119–316.

 14 The STAR Collaboration. "Global Λ hyperon polarization in nuclear collisions". In: Nature 548.7665 (2017), pp. 62–65.

$\Lambda(\bar{\Lambda})$ Transverse Polarization with ATLAS 15

 $^{15}\text{ATLAS}$ Collaboration, G. Aad, et al. "Measurement of the transverse polarization of Λ and $\bar{\Lambda}$ hyperons produced in proton-proton...". In: *Phys. Rev. D* 91 (2015),

20

Ω^- DECAY PARAMETERS

Ξ^0 DECAY PARAMETERS

See the ``Note on Baryon Decay Parameters" in

$lpha(\mathbf{\Omega}^-) \; lpha_-(\mathbf{\Lambda}) \; \mathsf{FOR} \; \mathbf{\Omega}^- o \mathbf{\Lambda} oldsymbol{K}^-$

Some early results have been omitted.

 $\alpha({f \Xi}^0) \ lpha_-({f \Lambda})$

This is a product of the $\varXi^0 o \Lambda \pi^0$ and $\Lambda o p \pi^-$ asy

VALUE	EVTS
$\bf 0.0115 \pm 0.0015$	OUR AVERAGE

VALUE	EVTS
-0.261 ± 0.006	OUR AVERAGE

¹⁶(Particle Data Group) Tanabashi, M. et al. "Review of Particle Physics". In: *Phys. Rev. D* 98.3 (Aug. 2018), p. 030001.

Consequences for Kaon Photoproduction Observables? **Intensities for Experimental Polarization Configurations:** LUY: Linear photon beam; unpolarized target; measured recoil

$$1 + \alpha_{-} \cos \theta_{y} \mathbf{P} - \{ \mathbf{\Sigma} + \alpha_{-} \cos \theta_{y} \mathbf{T} \} P_{L}^{\gamma} \cos 2(\alpha - \phi) \\ + \{ \alpha_{-} \cos \theta_{x} \mathbf{O}_{x} + \alpha_{-} \cos \theta_{z} \mathbf{O}_{z} \} P_{L}^{\gamma} \sin 2(\alpha - \phi)$$

CUY: Circularly photon beam; unpolarized target; measured recoil

$$1 + \alpha_{-} \cos \theta_{y} \mathbf{P} + (\alpha_{-} \cos \theta_{x} \mathbf{C}_{x} + \alpha_{-} \cos \theta_{z} \mathbf{C}_{z}) P_{C}^{\gamma}$$

Fierz identities connecting two experiments:

$$O_{x}^{2} + O_{z}^{2} + C_{x}^{2} + C_{z}^{2} + \Sigma^{2} - T^{2} + P^{2} = 1$$

$$\Sigma P - C_{x}O_{z} + C_{z}O_{x} - T = 0$$

Generate pseudodata:

- Pick random point in amplitude space
- Calculate observables from amplitudes
- Treat observables as independent and adjust value by a random number sampled from $\mathcal{N}(\mathbf{0},\sigma),$
- Single polarization observables have $\sigma \in [0.01, 0.05]$
- Double polarization observables have 3 $\times\,\sigma$

Writing

$$\mathcal{F} = {\bm{0_x}}^2 + {\bm{0_z}}^2 + {\bm{C_x}}^2 + {\bm{C_z}}^2 + {\bm{\Sigma}}^2 - {\bm{T}}^2 + {\bm{P}}^2$$

Also define pull as

$$\frac{\mathcal{F}-1}{\sigma_F}$$

Key Result: Histogram of Fierz Identities

Key Result: Histogram of Fierz Identities

Key Result: Histogram of Fierz Identities

Estimate α_{-} from *K* Λ data?

Infer α_{-} from $K\Lambda$ data

with: M. Döring, D. I. Glazier, J. Haidenbauer, R. Murray-Smith, M. Mai and D. Rönchen¹⁷.

Fierz Identities as Random Variables

$$\begin{aligned} \mathcal{F}_{i}^{(1)} = &a^{2}l^{2}\left(\mathcal{O}_{x,i}^{2} + \mathcal{O}_{z,i}^{2} - \mathcal{T}_{i}^{2}\right) + a^{2}c^{2}\left(\mathcal{C}_{x,i}^{2} + \mathcal{C}_{z,i}^{2}\right) + l^{2}\Sigma_{i}^{2} + a^{2}\mathcal{P}_{i}^{2} ,\\ \mathcal{F}_{i}^{(2)} = &al\left[\Sigma_{i}\mathcal{P}_{i} - \mathcal{T}_{i} - ac(\mathcal{C}_{x,i}\mathcal{O}_{z,i} - \mathcal{C}_{z,i}\mathcal{O}_{x,i})\right] ,\end{aligned}$$

where $a = \alpha_{-}^{PDG} / \alpha_{-}$ and *c*, *l* are relative calibrations (i.e. systematics) for circular and linear photon polarization, resp.

Instances of $\mathcal{F}_{i}^{(1)}$ and $\mathcal{F}_{i}^{(2)}$ for given *a*, *c* and *l* are $f_{i}^{(1)}$ and $f_{i}^{(2)}$

¹⁷D. G. Ireland et al. In: arXiv:1904.07616 (2019).

Likelihood Function

$$p_i(\mathfrak{O}_i|a,l,c) \propto \exp\left[-\left(rac{f_i^{(1)}-1}{\sigma_{\mathcal{F}_i^{(1)}}}
ight)^2 - \left(rac{f_i^{(2)}}{\sigma_{\mathcal{F}_i^{(2)}}}
ight)^2
ight],$$

assuming observables are independent and identically distributed (gaussian). $\mathfrak{O}_i = \cup_{j=1}^7 \mathcal{O}_{j,i}$ represents observables at point *i*

For observables from N bins:

$$\mathcal{P}(\mathfrak{O}|a,l,c) \propto \prod_{i=1}^n p_i(\mathfrak{O}_i|a,l,c)$$

where $\mathfrak{O} = \bigcup_{i=1}^{n} \mathfrak{O}_i$ represents entire data set.

i.e. the probability that the observables obey Fierz identity

Include knowledge of calibrations

Calculate posterior PDF from likelihood and prior:

 $\mathcal{P}(a, l, c | \mathfrak{O}) \propto \mathcal{P}(\mathfrak{O} | a, l, c) \mathcal{P}(l, c)$.

- Impose $\alpha_- \ge 0$
- Quoted systematic uncertainties in P_{γ}^{L} are 3-6% (use 5)
- Quoted systematic uncertainties in P_{γ}^{C} are 2% (use 2%)
- Which PDF to use? Gaussian $\mathcal{N}(1,\sigma)$? Uniform $\mathcal{U}(1-\sigma,1+\sigma)$?

Posterior PDF

Function of a, c and l, $\mathcal{P}(a, l, c|\mathfrak{O})$, calculations done by

- 1. Markov Chain Monte Carlo (MCMC)
- 2. Direct calculation on a c l grid

- Posterior in / and c does not look nice!
- Most probable values are reasonable!

p(c)

1.02

Posterior PDFs for α_{-} - Summary of results

 $\alpha_{-} = 0.721 \pm 0.006 \text{ (stat.) } \pm 0.005 \text{(sys.)}$

Source	Value	Prior Assumption P_{γ}^{L} , P_{γ}^{C}
PDG BES III	$\begin{array}{c} 0.642 \pm 0.013 \\ 0.750 \pm 0.009 \pm 0.004 \end{array}$	
CLAS	$\begin{array}{l} 0.719 \pm 0.013 \\ 0.721 \pm 0.006 \ (\star) \\ 0.727 \pm 0.007 \\ 0.717 \pm 0.004 \end{array}$	$\mathcal{N}(1.0, 0.05^2), \mathcal{N}(1.0, 0.02^2)$ $\mathcal{U}(0.95, 1.05), \mathcal{U}(0.98, 1.02)$ $\mathcal{U}(0.90, 1.10), \mathcal{U}(0.96, 1.04)$ Both fixed at 1.0
	$0.721 \pm 0.006 \pm 0.005$	Summary of our result

Consequences for Fitting Kaon Photoproduction Observables?

Refit of JüBo Coupled Channels Model

Observable	χ^2/n (Refits)		
(# data points)	$\alpha_{-} = 0.642$	0.75	0.721
$d\sigma/d\Omega$ (421)	1.11	1.03	0.95
Σ (314)	2.55	2.61	2.56
T (314)	1.75	1.74	1.69
P (410)	1.84	1.66	1.62
<i>C_x</i> (82)	2.15	1.72	1.34
<i>C</i> _z (85)	1.58	1.83	1.62
<i>O</i> _x (314)	1.44	1.53	1.51
<i>O</i> _z (314)	1.34	1.58	1.49
all (2254)	1.67	1.66	1.59

Improved fit!

• New BES III result for α_{-} is 17% higher than PDG value

- New BES III result for α_{-} is 17% higher than PDG value
- Affects all recoil observables relying on Λ weak decay

- New BES III result for α_{-} is 17% higher than PDG value
- Affects all recoil observables relying on Λ weak decay
- Kaon photoproduction data can independently determine α_

- New BES III result for α₋ is 17% higher than PDG value
- Affects all recoil observables relying on Λ weak decay
- Kaon photoproduction data can independently determine α_
- Our result: $\alpha_{-} = 0.721 \pm 0.006$ (stat.) ± 0.005 (sys.)

- New BES III result for α_{-} is 17% higher than PDG value
- Affects all recoil observables relying on Λ weak decay
- Kaon photoproduction data can independently determine α_
- Our result: $\alpha_{-} = 0.721 \pm 0.006$ (stat.) ± 0.005 (sys.)
- Other analyses will have to be reviewed!

Details posted on arXiv¹⁸

¹⁸D. G. Ireland et al. In: *arXiv:1904.07616* (2019).

Backup Slides

Light Baryon Spectrum - PDG 1996¹⁹ List of Δ Resonances

¹⁹R.M. Barnett et al. In: *Phys. Rev. D* 54 (1996), p. 1.

Light Baryon Spectrum - PDG 2018²⁰ List of \triangle Resonances

²⁰(Particle Data Group) Tanabashi, M. et al. "Review of Particle Physics". In: Phys. Rev. D 98.3 (Aug. 2018), p. 030001.

g8 $K - \Lambda$ Coverage

36

Gaussian Process Interpolation

Key Result: Pulls of Fierz Identities

Key Result: Pulls of Fierz Identities

Key Result: Pulls of Fierz Identities

MCMC Chain - no prior

MCMC Chain - gaussian prior

MCMC Chain - uniform prior

