Timelike Compton Scattering with CLAS12 at Jefferson Lab

Pierre Chatagnon

Institut de Physique Nucleaire d'Orsay
For the CLAS Collaboration
chatagnon@ipno.in2p3.fr

Glasgow, August 1st, 2019
From deeply virtual Compton scattering to timelike Compton scattering

DVCS \((\gamma^* p \rightarrow \gamma p) \)

TCS \((\gamma p \rightarrow \gamma^* p) \)

Compton Form Factors (CFF)

\[
\mathcal{H} = \sum_q e_q^2 \left\{ \mathcal{P} \int_{-1}^{1} dx H^q(x, \xi, t) \left[\frac{1}{\xi-x} - \frac{1}{\xi+x} \right] + i\pi \left[H^q(\xi, \xi, t) - H^q(-\xi, \xi, t) \right] \right\}
\]

Imaginary part
- Measured in DVCS asymmetries
- Accessible in TCS photon polarization asymmetry

Real part
- Accessible in DVCS cross section
- Accessible in TCS in cross section angular modulation

Guidal, Moutarde and Vanderhaeghen (2013)

\(H(x, \xi, 0) \)
Physics Motivations

- The CFFs dispersion relation at leading-order and leading twist:
 \[\text{Re} \mathcal{H}(\xi, t) = \mathcal{P} \int_{-1}^{1} dx \left(\frac{1}{\xi - x} - \frac{1}{\xi + x} \right) \text{Im} \mathcal{H}(\xi, t) + D(t) \]

- D-term expansion
 \[D(t) = \frac{1}{2} \int_{-1}^{1} dz \frac{D(z, t)}{1 - z} \]

 \[D(z, t) = (1 - z^2)[d_1(t) C_1^{3/2}(z) + \ldots] \]

- \(d_1(t) \) is directly related to the pressure distribution in the nucleon.

- Measurement of photon polarization asymmetry will provide a test of universality of GPDs.
TCS and Bethe-Heitler

\[\gamma p \rightarrow e^+ e^- p \]

TCS (GPDs)

\[\frac{d^4 \sigma}{dQ^2 dt d\Omega} = \sigma_{TCS} + \sigma_{BH} + \sigma_{INT} \]

TCS cross section not large enough to allow meaningful measurement

Use interference term to access GPDs

Berger, Diehl and Pire (2002)
$\gamma p \rightarrow e^+ e^- p$ kinematics

\[Q'^2 = (k + k')^2 \quad t = (p' - p)^2 \]

\[L = \frac{(Q'^2 - t)^2 - b^2}{4} \quad L_0 = \frac{Q'^4 \sin^2 \theta}{4} \quad b = 2(k - k')(p - p') \]

\[\tau = \frac{Q'^2}{2p \cdot q} \quad s = (p + q)^2 \quad t_0 = -\frac{4\xi^2 M^2}{(1-\xi^2)} \]
\(\gamma p \rightarrow e^+ e^- p \) Cross section and CFFs

Interference cross section

\[
\frac{d^4\sigma_{INT}}{dQ'^2\,dt\,d\Omega} = -\frac{\alpha_{em}^3}{4\pi s^2} \frac{1}{-t} \frac{m_p}{Q'} \frac{1}{\tau\sqrt{1-\tau}} \frac{L_0}{L} \left[\cos(\phi) \frac{1 + \cos^2(\theta)}{\sin(\theta)} \text{Re} \tilde{M}^{--} + \ldots \right]
\]

\[
\to \tilde{M}^{--} = \frac{2\sqrt{t_0 - t}}{M} \frac{1 - \xi}{1 + \xi} \left[F_1 \mathcal{H} - \xi(F_1 + F_2)\mathcal{H} - \frac{t}{4 M^2} F_2 \mathcal{E} \right]
\]

BH cross section

\[
\frac{d^4\sigma_{BH}}{dQ'^2\,dt\,d\Omega} \approx -\frac{\alpha_{em}^3}{2\pi s^2} \frac{1}{-t} \frac{1 + \cos^2(\theta)}{\sin^2(\theta)} \left[(F_1^2 - \frac{t}{4 M^2} F_2^2) \frac{2}{\tau^2} \frac{\Delta_T^2}{-t} + (F_1 + F_2)^2 \right]
\]

BH cross section diverges at \(\theta \approx 0^\circ \) and \(180^\circ \)

Weighted cross section ratio

\[
R(\sqrt{s}, Q'^2, t) = \frac{\int_0^{2\pi} d\phi \ \cos(\phi) \ \frac{dS}{dQ'^2\,dt\,d\phi}}{\int_0^{2\pi} d\phi \ \frac{dS}{dQ'^2\,dt\,d\phi}} \quad \frac{dS}{dQ'^2\,dt\,d\phi} = \int_{\pi/4}^{3\pi/4} d\theta \frac{L}{L_0} \frac{d\sigma}{dQ'^2\,dt\,d\phi}
\]
CLAS12 at Jlab

- Central Detector
 - Time-of-Flight (CTOF)
 - Tracking (SVT and MM)
 - Neutron detector (CND)

- Forward Detector
 - Drift Chambers (DC)
 - Time-of-Flight (FTOF)
 - Calorimeters (PCAL/EC)
 - Cherenkov Counters (HTCC and LTCC)
 - RICH
 - Forward tagger (FT)

Data Set

- First CLAS12 experiment, data were taken in the Spring and Fall 2018
- Beam energy 10.56 GeV / Liquid hydrogen target
- Two torus magnetic field configurations (Inbending/Outbending electrons)
- Total accumulated charge in the Faraday cup for data shown here: 18 mC \(\sim 3\%\) of the proposed total data (100 days at 75nA). Total taken data corresponds to 50% of total proposed data
Data analysis

\[ep \rightarrow e' \gamma p \rightarrow (e') e^+ e^- p' \]

Final state

- Use the CLAS12 reconstruction software PID
- Events with exactly one \(e^+ \), one \(e^- \) and one proton are selected

Scattered electron

- Cuts on scattered electron
- Look at missing transverse momentum of \(ep \rightarrow e^+ e^- pX \) system

Incoming photon

- The real photon is radiated by the beam electron
- Cuts on scattered electron constrain the virtuality of the photon
 \[Q^2 \propto \cos(\Theta_{\text{scattered}}) \]
$e^+ e^- pX$ final state selection

Protons

- Matching β calculated from Time-Of-Flight and momentum from tracking

Leptons

- Number of Cherenkov photons > 2
- Minimum energy deposit in the Pre-Shower Calorimeter (PCAL)
- Cuts on Calorimeters sampling fractions
Exclusivity cuts

- Scattered electron: $p_{\text{scattered}}^\mu e^- = p_{\text{beam}}^\mu + p_{\text{target}}^\mu - p_{\text{proton}}^\mu - p_{e^+}^\mu - p_{e^-}^\mu$

Simulation (e^+e^-p events weighted with BH weight)

- Pt/P scattered electron
- Pt/P vs Mass^2 scattered electron

Data (inbending)

- Pt/P scattered electron
- Pt/P vs Mass^2 scattered electron
3% of total proposed data

Low e^+e^- invariant mass spectrum is dominated by vector meson photoproduction \rightarrow Mass cut between the ρ region [$\rho(1450 \text{ MeV})$ and $\rho(1700 \text{ MeV})$] and $J/\psi(3 \text{ GeV})$ \rightarrow The mass region between 2 GeV and 3 GeV will be used for the analysis
Projected results

Experimental cross section ϕ modulation ratio

\[
R(\sqrt{s}, Q'^2, t) = \int_0^{2\pi} d\phi \cos(\phi) \frac{dS}{dQ'^2 dt d\phi} \quad \Rightarrow \quad R' = \sum_{\phi} \frac{\cos(\phi) Y_{\phi}}{\sum_{\phi} Y_{\phi}} \quad \text{where} \quad Y_{\phi} = \sum_{\theta} \frac{L}{L_0} \frac{N_{\phi}}{A_{\phi}^0}
\]

Estimate of CLAS12 acceptance with BH simulation

Acceptance in the θ/ϕ plane ($A_{\phi}^\theta = \frac{N_{REC}}{N_{GEN}}$)

\rightarrow Yellow lines are CLAS12 acceptance limits

\rightarrow Cut regions correspond to events where one lepton goes in the beam pipe (BH peaks are out of CLAS12 acceptance)
Projected results

Generator developed by R. Paremuzyan at Jefferson Lab.

→ Double distribution GPD parametrization

\[H(x, \xi, t) = H_{DD}(x, \xi, t) + \kappa \frac{1}{N_f} \Theta(\xi - |x|) D\left(\frac{x}{\xi}, t\right) \]

- \(R' \) is sensitive to D-term strength **BUT**
- \(R' \) also depends on the acceptance limits → difficulties to compare measurement with theoretical models
- Possibility to restore \(\theta \) dependence of the interference cross-section

\[
\frac{d^4 \sigma_{TOT}}{dQ'^2 dt d\Omega} = \frac{d^4 \sigma_{BH}}{dQ'^2 dt d\Omega} + \frac{d^4 \sigma_{INT}}{dQ'^2 dt d\Omega} \\
\frac{d^4 \sigma_{INT}}{dQ'^2 dt d\Omega} = -\frac{\alpha_{em}^3}{4\pi s^2} \frac{1}{-t} \frac{m_p}{Q'} \frac{1}{\tau \sqrt{1 - \tau}} \frac{L_0}{L} \]

\[
[\cos(\phi) \frac{1 + \cos^2(\theta)}{\sin(\theta)} \text{Re} \tilde{M}^{--} + ...]
\]
Conclusion

- Timelike Compton Scattering allows to investigate the real part of CFFs which is difficult to constrain with DVCS.
- No published results on TCS yet.
- Main resonances in the e^+e^- spectrum visible in CLAS12 data.
- Projected statistic will allow insight on the strength of the D-term.

Outlook

- The analysis procedure leading to R' has been developed.
- More statistics is coming from the data processing of the 2018 run.
- Dependence on acceptance limits of R' will be corrected to allow comparison with models and future TCS measurements.