## Timelike Compton Scattering with CLAS12 at Jefferson Lab

Pierre Chatagnon

Institut de Physique Nucleaire d'Orsay For the CLAS Collaboration

chatagnon@ipno.in2p3.fr

Glasgow, August 1st, 2019



# From DeeplyVirtualComptonScattering to TimelikeComptonScatteringDVCS $(\gamma^* p \rightarrow \gamma p)$ TCS $(\gamma p \rightarrow \gamma^* p)$





Compton Form Factors (CFF)  $\mathcal{H} = \sum_{q} e_{q}^{2} \left\{ \mathcal{P} \int_{-1}^{1} dx H^{q}(x,\xi,t) \left[ \frac{1}{\xi-x} - \frac{1}{\xi+x} \right] + i\pi \left[ H^{q}(\xi,\xi,t) - H^{q}(-\xi,\xi,t) \right] \right\}$ 

#### **Imaginary part**

- Measured in DVCS asymmetries
- Accessible in TCS photon polarization asymmetry

#### Real part

- Accessible in DVCS cross section
- Accessible in TCS in cross section angular modulation



Pierre Chatagnon (IPNO)

## **Physics Motivations**

• The CFFs dispersion relation at leading-order and leading twist :

$$Re\mathcal{H}(\xi,t) = \mathcal{P}\int_{-1}^{1} dx \left(\frac{1}{\xi-x} - \frac{1}{\xi+x}\right) Im\mathcal{H}(\xi,t) + D(t)$$

• D-term expansion

$$D(t) = \frac{1}{2} \int_{-1}^{1} dz \frac{D(z,t)}{1-z}$$

$$D(z,t) = (1-z^2)[d_1(t)C_1^{3/2}(z) + ...]$$

- $d_1(t)$  is directly related to the pressure distribution in the nucleon.
- Measurement of photon polarization asymmetry will provide a test of universality of GPDs.







Boër, Guidal, Vanderhaeghen (2015)

## **TCS and Bethe-Heitler**





$$\frac{d^4\sigma}{dQ'^2 dt d\Omega} = \sigma_{TCS} + \sigma_{BH} + \sigma_{INT}$$

TCS cross section not large enough to allow meaningful measurement Use interference term to access GPDs

Berger, Diehl and Pire (2002)

## $\gamma p \rightarrow e^+ e^- p$ kinematics



$$Q'^{2} = (k + k')^{2} \qquad t = (p' - p)^{2}$$

$$L = \frac{(Q'^{2} - t)^{2} - b^{2}}{4} \qquad L_{0} = \frac{Q'^{4} \sin^{2} \theta}{4} \qquad b = 2(k - k')(p - p')$$

$$\tau = \frac{Q'^{2}}{2p \cdot q} \qquad s = (p + q)^{2} \qquad t_{0} = -\frac{4\xi^{2}M^{2}}{(1 - \xi^{2})}$$

## $\gamma p \rightarrow e^+ e^- p$ Cross section and CFFs

#### Interference cross section

$$\frac{d^4\sigma_{INT}}{dQ'^2 dt d\Omega} = -\frac{\alpha_{em}^3}{4\pi s^2} \frac{1}{-t} \frac{m_p}{Q'} \frac{1}{\tau\sqrt{1-\tau}} \frac{L_0}{L} [\cos(\phi) \frac{1+\cos^2(\theta)}{\sin(\theta)} \operatorname{Re} \tilde{M}^{--} + \ldots]$$

$$\rightarrow \tilde{M}^{--} = \frac{2\sqrt{t_0 - t}}{M} \frac{1 - \xi}{1 + \xi} \left[ F_1 \mathcal{H} - \xi (F_1 + F_2) \tilde{\mathcal{H}} - \frac{t}{4M^2} F_2 \mathcal{E} \right]$$

BH cross section

$$\frac{d^4 \sigma_{BH}}{dQ'^2 dt d\Omega} \approx -\frac{\alpha_{em}^3}{2\pi s^2} \frac{1}{-t} \frac{1 + \cos^2(\theta)}{\sin^2(\theta)} \left[ (F_1^2 - \frac{t}{4M^2} F_2^2) \frac{2}{\tau^2} \frac{\Delta_T^2}{-t} + (F_1 + F_2)^2 \right]$$

BH cross section diverges at  $\theta \approx 0^\circ$  and  $180^\circ$ 

## Weighted cross section ratio

$$R(\sqrt{s},Q'^{2},t) = \frac{\int_{0}^{2\pi} d\phi \cos(\phi) \frac{dS}{dQ'^{2}dtd\phi}}{\int_{0}^{2\pi} d\phi \frac{dS}{dQ'^{2}dtd\phi}} \qquad \frac{dS}{dQ'^{2}dtd\phi} = \int_{\pi/4}^{3\pi/4} d\theta \frac{L}{L_{0}} \frac{d\sigma}{dQ'^{2}dtd\phi d\theta}$$

## CLAS12 at Jlab

- Central Detector
  - Time-of-Flight (CTOF)
  - Tracking (SVT and MM)
  - Neutron detector (CND)
- Forward Detector
  - Drift Chambers (DC)
  - Time-of-Flight (FTOF)
  - Calorimeters (PCAL/EC)
  - Cherenkov Counters (HTCC and LTCC)
  - RICH
  - Forward tagger (FT)



## Data Set

- First CLAS12 experiment, data were taken in the Spring and Fall 2018
- Beam energy 10.56 GeV / Liquid hydrogen target
- Two torus magnetic field configurations (Inbending/Outbending electrons)
- Total accumulated charge in the Faraday cup for data shown here : 18  $mC \sim 3\%$  of the proposed total data (100 days at 75nA). Total taken data corresponds to 50% of total proposed data

## Data analysis

 $ep 
ightarrow e' \gamma p 
ightarrow (e') e^+ e^- p'$ 

### **Final state**

- Use the CLAS12 reconstruction software PID
- Events with exactly one e<sup>+</sup>,one e<sup>-</sup> and one proton are selected

#### Scattered electron

- Cuts on scattered electron
- Look at missing transverse momentum of  $ep \rightarrow e^+e^-pX$ system

#### **Incoming photon**

- The real photon is radiated by the beam electron
- Cuts on scattered electron constrain the virtuality of the photon  $Q^2 \propto cos(\Theta_{scattered})$

## $e^+e^-pX$ final state selection



#### Leptons



 Matching β calculated from Time-Of-Flight and momentum from tracking

- Number of Cherenkov photons > 2
- Minimum energy deposit in the Pre-Shower Calorimeter (PCAL)
- Cuts on Calorimeters sampling fractions

## **Exclusivity cuts**

• Scattered electron: 
$$p^{\mu}_{scattered\ e^-} = p^{\mu}_{beam} + p^{\mu}_{target} - p^{\mu}_{proton} - p^{\mu}_{e^+} - p^{\mu}_{e^-}$$

Simulation (e<sup>+</sup>e<sup>-</sup>p events weighted with BH weight)



## Lepton-pair spectrum



• 3% of total proposed data

• Low  $e^+e^-$  invariant mass spectrum is dominated by vector meson photoproduction  $\rightarrow$  Mass cut between the  $\rho$  region [  $\rho(1450 \text{ MeV})$  and  $\rho(1700 \text{ MeV})$  ] and  $J/\psi(3 \text{ GeV}) \rightarrow$  The mass region between 2 GeV and 3 GeV will be used for the analysis

## **Projected results**

#### Experimental cross section $\phi$ modulation ratio

$$R(\sqrt{s}, Q'^{2}, t) = \frac{\int_{0}^{2\pi} d\phi \cos(\phi) \frac{dS}{dQ'^{2}dtd\phi}}{\int_{0}^{2\pi} d\phi \frac{dS}{dQ'^{2}dtd\phi}} \quad \rightarrow \quad R' = \frac{\sum_{\phi} \cos(\phi)Y_{\phi}}{\sum_{\phi} Y_{\phi}} \text{ where } Y_{\phi} = \sum_{\theta} \frac{L}{L_{0}} N_{\theta}^{\phi} \frac{1}{A_{\theta}^{\phi}}$$

#### Estimate of CLAS12 acceptance with BH simulation 0.52 GeV<sup>2</sup> <-t<0.65 GeV<sup>2</sup> 0.65 GeV<sup>2</sup> <-t<0.8 GeV<sup>2</sup> 140 140 ÷ • 130 130 120 120 110 100 90 80 60 -150 -100 -50 50 100 150 -150-100 -50 100 0 50 150 Acceptance in the $\theta/\phi$ plane $(A_{\theta}^{\phi} = \frac{N_{REC}}{N_{CEN}})$ $\rightarrow$ Yellow lines are CLAS12 acceptance limits $\rightarrow$ Cut regions correspond to events where one lepton goes in the beam pipe (BH peaks are out of CLAS12 acceptance)

## **Projected results**

Generator developed by R. Paremuzyan at Jefferson Lab.

 $\rightarrow$  Double distribution GPD parametrization

$$H(x,\xi,t) = H_{DD}(x,\xi,t) + \kappa \frac{1}{N_f} \Theta(\xi - |x|) D(\frac{x}{\xi},t)$$



- *R'* is sensitive to D-term strength BUT *R'* also depends on the acceptance limits → difficulties to compare measurement with theoretical models
- Possibility to restore θ dependence of the interference cross-section

$$\frac{d^{4}\sigma_{TOT}}{dQ'^{2}dtd\Omega} = \frac{d^{4}\sigma_{BH}}{dQ'^{2}dtd\Omega} + \frac{d^{4}\sigma_{INT}}{dQ'^{2}dtd\Omega}$$
$$\frac{d^{4}\sigma_{INT}}{dQ'^{2}dtd\Omega} = -\frac{\alpha_{em}^{3}}{4\pi s^{2}} \frac{1}{-t} \frac{m_{p}}{Q'} \frac{1}{\tau\sqrt{1-\tau}} \frac{L_{0}}{L}$$
$$[\cos(\phi) \frac{1+\cos^{2}(\theta)}{\sin(\theta)} Re \ \tilde{M}^{--} + ...]$$

#### Conclusion

- Timelike Compton Scattering allows to investigate the real part of CFFs which is difficult to constrain with DVCS.
- No published results on TCS yet.
- Main resonances in the  $e^+e^-$  spectrum visible in CLAS12 data.
- Projected statistic will allow insight on the strength of the D-term.

## Outlook

- The analysis procedure leading to R' has been developed.
- More statistics is coming from the data processing of the 2018 run.
- Dependence on acceptance limits of *R'* will be corrected to allow comparison with models and future TCS measurements.