Future SRC Measurements

Lawrence Weinstein Old Dominion University

- Existing SRC data
- What we want to learn
- The CaFe experiment
- Tagged DIS
- Measuring everything with CLAS12
 - New physics
 - Old physics done better
- Questions for discussion

Status

What we know:

- Almost all protons with p > 300 MeV/c belong to SRC
 - $300 < p_{rel} < 500$ MeV/c: Almost all have a neutron partner
 - − p_{rel} > 500 MeV/c: tensor → scalar transition
- $P_{\rm cm}$ consistent with adding two "mean field" nucleons

- $\sigma_x = \sigma_y = \sigma_z \approx 150 \text{ MeV/c}$

- pn pair dominance → protons move faster than neutrons in asymmetric nuclei
- The strength of the EMC effect is correlated with the probability of finding a nucleon in an SRC pair
 - The EMC effect can be explained by a universal modification of the structure of nucleons in pn SRC pairs

Existing data

How we know it:

→ a few hundred A(e,e'pp) and A(e,e'pn) events each at x > 1.1 and Q² > 1.7 GeV² on

- ⁴He and C (Hall A)
- C, Al, Fe and Pb (CLAS6 eg2)
- ³He, ⁴He, C and Fe (CLAS6 e2)

Simple reaction mechanism interpretation

What we want to learn

• More precision on existing measurements

Missing Momentum [GeV/c]

What we really want to learn

- The NN interaction and the nuclear wave function* at short distances,
- SRC pair formation mechanisms,
- Nuclear asymmetry-dependence of SRCs,
- Three-Nucleon SRCs,
- The EMC Effect and its relation to SRCs And finally
- More precision on existing measurements

* The wave function is not an observable. This assumes the onebody operator, high momentum wave function picture.

What are correlations?

Average Two-Nucleon Properties in the Nuclear Ground State Two-body currents are not Correlations (but add coherently)

Need to calculate or minimize the effect of 2-body currents L. Weinstein, Quantitative SRC 2019 to make quantitative statements about SRC

Upcoming experiments: (1) CaFe

- How do 8 extra *neutrons* change the fraction of highmomentum *protons*?
- How do $1f_{7/2}$ neutrons pair with *s*, *p*, *d* core protons?
- A(e,e'p) on 40 Ca, 48 Ca and 54 Fe E'_{e} Q^2 E_{Beam} $heta_e$ θ_p $|\mathbf{p}_p|$ $-Q^2 \approx 2 \,\mathrm{GeV^2}$, p_{miss} GeV/cGeV/c GeV^2 GeV GeV $- \theta_{pr} < 40^{\circ}$ $9.85 | 8.0^{\circ} |$ 1.43 63.0° 11 0.402.1-x > 1 $9.85 | 8.0^{\circ} |$ 11 2.01 44.5° 0.151.8
 - Low and hi $\vec{p}_{miss} = \vec{q} \vec{p}_p$
- Take double ratios of hi \vec{p}_{miss} to low \vec{p}_{miss} cross sections for ⁴⁸Ca relative to ⁴⁰Ca (and ⁵⁴Fe)

How to do interpretable expts (in the absence of a comprehensive theory)

- Minimize unwanted reaction mechanisms
 - $Q^2 \approx 2 \text{ GeV}^2$: reduces MEC and Δ contributions
 - θ_{pr} < 40°: reduces FSI
 - x > 1: reduces MEC and Δ contributions
 - Take ratios of cross sections: further reduces FSI
 - Take ratios of ratios of cross sections ...

Expected CaFe uncertainties

E12-17-005, approved for four(!) *entire* days of beam time

Upcoming experiments: (2) Tagged DIS

- Measure DIS from a nucleon in deuterium
- "Tag" that nucleon by measuring the other "spectator" backward nucleon
- How do bound nucleon structure functions vary with nucleon momentum or virtuality $v = p^2 m^2$?
 - Mean field vs SRC pairs
- Tag backward neutrons: BAND + CLAS12 (running now)
- Tag backward protons: LAD + HMS and SHMS in Hall C

Experimental Method

 $d(e,e'N_S)$ cross section Factorizes into the cross section $(\sigma \propto F_2)$ times the distorted spectral function $S^D(p, E)$.

Cross section ratio at fixed nucleon momentum→ distorted spectral function cancels:

$$F_{2}^{*}(x_{1}',\alpha_{s},p_{T},Q_{1}^{2})/F_{2}^{*}(x_{2}',\alpha_{s},p_{T},Q_{1}^{2}) = \left(\frac{d^{4}\sigma}{dx_{1}'dQ^{2}d\vec{p}_{s}}/K_{1}\right) / \left(\frac{d^{4}\sigma}{dx_{2}'dQ^{2}d\vec{p}_{s}}/K_{2}\right)$$

Measure α_s dependence at $\theta_{pq} > 107^{\circ}$ (small FSI)

$$x' = \frac{Q^2}{2p_{\mu}q^{\mu}} = \frac{Q^2}{2[(M_d - E_s)\omega + \vec{p}_s \cdot \vec{q}]}$$

x' is *x*-Bjorken in the moving struck-nucleon frame

$$= (E_s - p_s^z) / m_s \qquad \qquad \vec{p}_s \text{ maps to}(\alpha_s, p_T)$$

 $\alpha_{\rm s}$

Experimental Method (cont.)

Minimize experimental and theoretical uncertainties by measuring cross-section ratios

$$\frac{\sigma_{DIS}(x_{high}^{'}, Q_{1}^{2}, \vec{p}_{s})}{\sigma_{DIS}(x_{low}^{'}, Q_{2}^{2}, \vec{p}_{s})} \cdot \frac{\sigma_{DIS}^{free}(x_{low}^{'}, Q_{2}^{2})}{\sigma_{DIS}^{free}(x_{high}^{'}, Q_{1}^{2})} \cdot R_{FSI} = \frac{F_{2}^{bound}(x_{high}^{'}, Q_{1}^{2}, \vec{p}_{s})}{F_{2}^{free}(x_{high}^{'}, Q_{1}^{2})}$$
FSI

x' = x from a moving nucleon $x'_{high} \ge 0.45$ FSI correction factor

$$0.25 \ge x'_{low} \ge 0.35$$
 No EMC effect is expected

$$x'_{B} = \frac{Q^{2}_{(For d)}}{2p_{\mu}q^{\mu}} \stackrel{Q^{2}}{=} \frac{Q^{2}}{2[(M_{d} - E_{S})\omega + \vec{p}_{S} \cdot \vec{q}]}$$

$$x_B = \frac{Q^2}{2m_N\omega}$$

LAD and BAND expected results

See Florian's talk Saturday for details

Upcoming experiments: (3) CLAS12 SRC/e4v

15

Upcoming experiments: (3) CLAS12 SRC/e4v

E	d	⁴ He	С	0	²⁸ Si	⁴⁰ Ar	⁴⁰ Ca	⁴⁸ Ca	Sn	Pb	Total
1.1	Х	Х	0.5	0.5	Х	0.5	Х	Х	Х	Х	1.5
2.2	Х	Х	1	Х	Х	1	Х	Х	Х	Х	2
4.4	2	1	1	Х	Х	1	Х	Х	1	1	7
6.6	5	3	2	Х	2	2	3	3	4	5	29
Total days	7	4	4.5	0.5	2	4.5	3	3	5	5	<u>39.5</u>

- Increase statistics by ~ 10 (per nucleus) over CLAS6 data
- Expand range of nuclei
 - Separate *A* and asymmetry effects
 - ⁴⁸Ca and Sn have the same asymmetry

e4v: Electrons for neutrinos

- Use electron scattering data to constrain neutrino event generators
 - Cross sections
 - Incident energy reconstruction

e4v: Electrons for neutrinos

- Use electron scattering data to constrain neutrino event generators
 - GENIE has both electron and neutrino modes
- Cross sections
- Incident energy reconstruction
- C, O, Ar targets
- Range of energies

New Expt, New and New-ish Physics

- Do 3N SRC exist?
 - Low abundance, hard to find
 - Important for neutron stars and NNN interactions
 - Expect few-100 (e,e'ppn) events at most
- NN interaction and nuclear wave fn at short distances
 - Study d and 4He, compare to heavier nuclei to prove A independence

New Expt, New and New-ish Physics

- SRC pair formation mechanisms
- Nuclear asymmetry dependence
 - Compare nn and pp pairs in symmetric and neutron-rich nuclei
 - Separate A and asymmetry dependence
 - Previous nuclei were C, Al, Fe, and Pb
 - Now: (4He, C, 28Si, 40Ca), (48Ca, Sn), (Pb)
- EMC-SRC studies
 - Many nuclei
 - Tagged (new) and inclusive (new-ish)
- Reaction mechanism studies
 - Need much better theory support to become quantitative

All the new experiments

- New physics (30%)
 - 3N SRC
 - Tagged DIS
 - Superfast quarks in nuclei
 - x>2 inclusive measurements
- New-ish physics (70%)
 - More nuclei
 - More statistics
 - Need more theory support to fully exploit the increased precision

But ...

• Can we relate (Q^2, x_B) to minimum p_{miss} in (e,e')?

- − Different A-2 excitation energies → 50 MeV/c variation in p_{miss} min
- C and d curves are non-parallel due to C binding energy and pair motion

Statements for discussion

- We can't relate (Q^2, x_B) to minimum p_{miss} in (e,e')
 - How can we interpret a2?
 - How can we relate (e,e') cross sections to momentum distributions?
- We don't have complete reaction mechanism calculations for (e,e'p) and (e,e'pN)
 - How can we interpret (e,e'p) and (e,e'pN) cross sections and ratios?

backup

