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My controversial claim:

Our new analysis shows that SRC data can constrain the NN interaction

up to relative momenta of 1 GeV/c.
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Constraining the NN interaction

with SRC data
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Cross Sections
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Constraining the NN interaction

with SRC data

NN Interaction SRC DataAb Initio
Cross Sections in kinematics where

plane-wave is valid
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Generalized Contact Formalism

When rij → 0 or kij →∞:

ψ(r1, r2 . . . rA) −→ ϕ(rij) × A(r1, . . . rA)

Universal ≈ constant

ϕ: determined from NN interaction model

A: abundance of pairs in this nucleus∫
A −→ C , nuclear contact
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We assume a fully plane-wave reaction.
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Integrating over ~p2 produces a spectral function

for SRC break-up.

From Weiss et al., PLB 791 (2019) pp 242–248:

Sα =
1

4π

∫
d~p2

(2π)3
δ(f (~p2))

∣∣∣∣ϕα(~p1 − ~p22

)∣∣∣∣2 nα(~p1 + ~p2)

By sampling instead of integrating, we get a generator:

dσ ∼ σeN · n(~pCM) ·
∑
α

Cα|ϕ̃α(k)|2
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Model Input

ϕα(~prel.)

Cα

n(~Pcm): 3D Gaussian with σcm

Residual excitation energy: E ∗
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ϕα(~prel.)

Cα

n(~Pcm): 3D Gaussian with σcm

Residual excitation energy: E ∗

214 R. Weiss et al. / Physics Letters B 780 (2018) 211–215

Fig. 2. (left) 4He one-body momentum densities extracted from ab-initio VMC cal-
culations (solid black band) and using the nuclear contact formalism (solid red 
band). The dashed lines show the contribution of different channels to the total 
contact calculation, using the contacts extracted in momentum space. The resid-
ual plot shows the ratio of the contact calculations to the VMC. The shaded region 
marks the 10% agreement region. The width of the black and red lines represents 
the individual uncertainties in the calculations. (right) The same, without error 
bands, comparing VMC calculations (dashed lines) and the nuclear contact formal-
ism (solids lines) for different nuclei. The contacts used to calculate the distributions 
on the right plot were extracted in coordinate space.

details. Within the contact formalism, these experimental quanti-
ties can be expressed as:

a2(A/d)

∞∫

kF

|ψ̃d(k)|2dk =
C s=0

nn + C s=0
pp + C s=0

pn + C s=1
pn

A/2
(6)

S RC pp

S RC pn
(k) =

C s=0
pp |ϕ̃s=0

pp (k)|2
C s=0

pn |ϕ̃s=0
pn (k)|2 + C s=1

pn |ϕ̃s=1
pn (k)|2

(7)

where ψ̃d(k) is the deuteron wave function, normalized to one. In 
Eq. (7) it is assumed that the c.m. motion of SRC pairs is small, and 
similar for the different types of pairs in a given nucleus, as ob-
served experimentally [46–48,58]. The experimental values of the 
contacts, shown in Table 1, were extracted for symmetric nuclei 
using these relations, assuming isospin symmetry.

The agreement between the values of the contacts that were 
extracted in momentum and coordinate space, points to a quan-
titative equivalence between high-momentum and short-range 
physics in nuclear systems. The agreement with the experimental 
extraction is an important indication for the validity of the con-
tact formalism to nuclear systems. Another interesting feature of 
the extracted values is that, for symmetric nuclei, the momentum 
space s = 0 pp and pn contacts are the same within uncertainties, 
in contrast to combinatorial expectations.

We can now utilize the values of the contacts to further in-
vestigate the predictions of the theory. First, we note that as the 
relation between the contacts and the one body momentum dis-
tribution, given in Eq. (3), was not used to fit the values of the 
contacts it can be considered as a verifiable prediction. Fig. 2
compares, for several nuclei, the one-body momentum distribu-
tion obtained from many-body VMC calculations to the prediction 
of Eq. (3). As can be seen, the asymptotic 1-body density, as pre-
dicted by the contact theory, reproduces with 10%–20% accuracy 
the many-body calculation starting from kF to 5 fm−1, where the 
momentum density varies over 3 orders of magnitude. It is worth 

emphasizing that even though the contacts fitting range was only 
k > 4 fm−1 using the two-body momentum distribution, the one-
body momentum distribution is reproduced starting from kF , as 
expected.

The contacts can also be used to calculate the pp to pn SRC 
pairs ratio using Eq. (7). This ratio can be compared with exper-
imental electron induced two-nucleon knockout data [44–48] as 
shown for 4He in Fig. 1. A similar comparison for 12C [46] also 
shows a good agreement [57]. We can see that the contact predic-
tions are in a good agreement with the experimental results and 
ab-initio calculations.

The contact formalism also allows us to evaluate the contribu-
tions of the different two-body channels to SRC pairs. Such de-
composition is shown in Fig. 2 (left panel) for 4He. The values of 
the contacts clearly show the expected dominance of the deuteron 
channel in SRC pairs. The fact that the contact formalism repro-
duces the VMC one-body momentum density to 10%–20% accu-
racy, without utilizing the spin–isospin ST = 11 channels, indicates 
their small importance to SRCs in the nuclei considered here. This 
stands in contrast to other works that do find a non-negligible 
contribution of ST = 11 pairs [59,60]. A possible explanation for 
this difference goes back to our discussion of the regions where 
the two-body momentum distribution describes SRCs. In these two 
papers, the c.m. momentum was not limited to small values and, 
thus, contributions from non-correlated pairs are expected to be 
significant. The contact theory provides a simple framework to per-
form such decompositions for SRC channels.

Conclusions – Even though nuclear systems do not strictly ful-
fill the scale-separation conditions required by the contact theory, 
both ab-initio one body momentum distribution above kF and the 
experimental data are well reproduced using factorized asymptotic 
wave-functions and nuclear contact theory.

Consistent contacts extracted by separately fitting coordinate 
and momentum space two-body densities show equivalence be-
tween high-momentum and short-range dynamics in nuclear sys-
tems. Experimental extraction of the contacts gives also similar 
results. The values of the contacts allow a proper analysis of the 
spin–isospin quantum numbers of SRC pairs, and also reveal the 
non-combinatorial isospin-spin symmetry of SRCs.

This work provides clear evidence for the applicability of the 
generalized contact formalism to nuclear systems, and open the 
path towards further SRC studies.
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Model Input

ϕα(~prel.)

Cα

n(~Pcm): 3D Gaussian with σcm

Residual excitation energy: E ∗

Aðe; e0ppÞ events were selected by requiring that the
Aðe; e0pÞ event had a second, recoil proton with momen-
tum jp⃗recoilj ≥ 350 MeV=c. There were no events in which
the recoil proton passed the leading proton selection cuts
described above. The recoil proton was emitted opposite to
p⃗miss [10], consistent with the measured pairs having large
relative momentum and smaller c.m. momentum.
In the Plane Wave Impulse Approximation (PWIA),

where the nucleons do not rescatter as they leave the
nucleus, p⃗miss and p⃗recoil are equal to the initial momenta of
the two protons in the nucleus before the interaction. In that
case we can write

p⃗c:m: ¼ p⃗miss þ p⃗recoil ¼ p⃗p − q⃗þ p⃗recoil; ð3Þ

p⃗rel ¼
1

2
ðp⃗miss − p⃗recoilÞ: ð4Þ

We use a coordinate system where ẑ is parallel to p̂miss, and
x̂ and ŷ are transverse to it and defined by: ŷkq⃗ × p⃗miss
and x̂¼ ŷ× ẑ.
Figure 2 shows the number of Aðe; e0ppÞ events plotted

versus the x and y components of p⃗c:m: [see Eq. (3)]. The
data shown are not corrected for the CLAS acceptance
and resolution effects. As the Aðe; e0ppÞ cross section is
proportional to nAc:m:ðp⃗c:m:Þ, we can extract the width of

nAc:m:ðp⃗c:m:Þ from the widths of the measured distributions.
Both px

c:m: and p
y
c:m: are observed to be normally distributed

around zero for all nuclei. Thus, as expected, nAc:m:ðp⃗c:m:Þ
can be approximated by a three-dimensional Gaussian
[5,7,9,14,35], and we characterize its width using σx and
σy, the standard deviation of the Gaussian fits in the two
directions transverse to p⃗miss. We average σx and σy for
each nucleus to get σc:m:, the Gaussian width of one
dimension of nAc:m:ðp⃗c:m:Þ. These widths are independent
of the magnitude of pmiss, supporting the factorization
of Eq. (3).
There are three main effects that complicate the inter-

pretation of the raw (directly extracted) c.m. momentum
distribution parameters (i.e., σc:m:): (i) kinematical offsets
of the c.m. momentum in the p̂miss direction, (ii) reaction
mechanism effects, and (iii) detector acceptance and
resolution effects. We next explain how each effect is
accounted for in the data analysis.
(i) Kinematical offsets in the c.m. momentum direction:

Since the relative momentum distribution of pairs falls
rapidly for increasing jp⃗relj, it is more likely for an event
with a large nucleon momentum (p⃗miss) to be the result of a
pair with smaller p⃗rel and a p⃗c:m: oriented in the direction of
the nucleon momentum. This kinematical effect will
manifest as a shift in the mean of the c.m. momentum
distribution in the p̂miss (nucleon initial momentum) direc-
tion. To isolate this effect, we worked in a reference frame
in which ẑkp̂miss and x̂ and ŷ are perpendicular to p̂miss. The
extracted c.m. momentum distributions in the x̂ and ŷ
directions were observed to be independent of p⃗miss, as
expected.
(ii) Reaction mechanism effects: These include mainly

contributions from meson-exchange currents (MECs), iso-
bar configurations (ICs), and rescattering of the outgoing
nucleons (final-state interactions or FSI) that can mimic the
signature of SRC pair breakup and/or distort the measured
distributions [50–52].
This measurement was performed at an average Q2 of

about 2.1 GeV2 and xB ≥ 1.2 to minimize the contribu-
tion of MEC and IC relative to SRC breakup [49,53–55].
Nucleons leaving the nucleus can be effectively
“absorbed,” where they scatter inelastically or out of the
phase space of accepted events. The probability of absorp-
tion ranges from about 0.5 for C to 0.8 for Pb [47,57–60].
Nucleons that rescatter by smaller amounts (i.e., do not
scatter out of the phase space of accepted events) are still
detected, but have their momenta changed. This rescatter-
ing includes both rescattering of the struck nucleon from
its correlated partner and from the other A − 2 nucleons.
Elastic rescattering of the struck nucleon from its correlated
partner will change each of their momenta by equal and
opposite amounts, but will not change p⃗c:m: [see Eq. (3)]
[49,55]. To minimize the effects of rescattering from the
other A − 2 nucleons, not leading to absorption, we
selected largely antiparallel kinematics, where p⃗miss has

FIG. 2. The number of Aðe; e0ppÞ events plotted versus the
components of p⃗c:m: perpendicular to p⃗miss. The red and blue
histograms show the x̂ and ŷ directions, respectively. The data are
shown before corrections for the CLAS detector acceptance.
The dashed lines show the results of Gaussian fits to the data. The
widths in parentheses with uncertainties are corrected for the
CLAS acceptance as discussed in the text.

PHYSICAL REVIEW LETTERS 121, 092501 (2018)

092501-4
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FIG. 2. The number of Aðe; e0ppÞ events plotted versus the
components of p⃗c:m: perpendicular to p⃗miss. The red and blue
histograms show the x̂ and ŷ directions, respectively. The data are
shown before corrections for the CLAS detector acceptance.
The dashed lines show the results of Gaussian fits to the data. The
widths in parentheses with uncertainties are corrected for the
CLAS acceptance as discussed in the text.
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Connecting the model to data

DataModel

Radiative corrections
Acceptance corrections
FSI corrections, etc...
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We forward propagate the model to the data.

1 Generate events according to

model

2 Radiative effects

3 Transparency/SCX using

Glauber

4 Detector acceptance

5 Same event selection as data
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We forward propagate the model to the data.

1 Generate events according to

model

2 Radiative effects

3 Transparency/SCX using

Glauber

4 Detector acceptance

5 Same event selection as data
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FIG. 16: The relative angle between the detected proton and the momentum transfer
(i.e. the q⃗ vector) vs. the ratio of the detected proton momentum and the momentum

transfer. Only 12C(e,e′p) events with xB > 1.2 and |P⃗miss| > 300 MeV/c are shown.
The red box shows the cut applied to select leading protons.

Missing Mass Cut - Avoiding Delta Excitations

Even when working at large xB there is still some contribution from resonance

production. The most probable production mechanisms when scattering off protons

are pion and delta production. If the electron scatters from a pair of nucleons at rest

(i.e., Pc.m. = 0), then the missing mass of the (e,e′p) reaction is:

M2
miss = (q̄ + 2mN − P̄lead)

2 (3)

Where,

q̄ = (ω, q⃗) is the 4-vector of the virtual photon,

(2mN , 0) is the 4-vector of the pp pair,

P̄lead = (

√
m2

N + |P⃗lead|2, P⃗lead) is the 4-vector of the struck proton.

Neglecting the center of mass motion of the pair, the missing mass should be

equal to a nucleon mass. Due to the finite resolution of CLAS and the center of

mass motion of the pair, we expect this distribution to have a finite width and an

offset from the real proton mass. Indeed the missing mass distribution, shown in

22



Choosing kinematics that minimize FSI

Isobar Config.
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SRC events are selected in kinematics that

minimize final-state interactions.

Missing Momentum
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Leading Proton
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Recoil
(Low mom.)
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~pmiss is anti-parallel to ~q

for C, Al, Fe, Pb.
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We remain anti-parallel over our pmiss range.
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Event selection criteria

A(e, e ′p)

xB > 1.2

θpq < 25◦

0.62 < |~pp|/|~q| < 0.96

Mmiss < 1.1 GeV

0.3 < |~pmiss | < 1.0 GeV/c

Fiducial cuts on e ′, p

A(e, e ′pp)

Event passes A(e, e ′p) criteria
Additional recoil proton with |~p| > 0.35 GeV/c

. . . passing fiducial cuts
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Leading and recoil protons are distinct.
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Leading and recoil protons are distinct.
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Data-Model comparisons

Carbon data only

Contacts determined from fits to VMC

NN interactions

AV18

Local χPT N2LO (1 fm cut-off)
Not ready yet:

Local χPT N2LO (1.2 fm cut-off)

Non-local χPT

Model uncertainty from:

Contacts

σCM

SCX prob.

Transparency

A− 2 excitation E ∗

prel. cut-off

e− res.

p res.
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Data-Model comparisons
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Data-Model comparisons
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The model accurately predicts kinematics.
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C(e, e ′pp)
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Missing-momentum distributions
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Missing-momentum and missing-energy
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(e, e ′pp)/(e, e ′p) ratio
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My controversial claim:

Our new analysis shows that SRC data can constrain the NN interaction

up to relative momenta of 1 GeV/c.
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BACK-UP
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Reaction
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Model cross section

d8σ

dQ2dxBdφed3~pCMdΩ2
=

σeN
32π4

n(~pCM)J
∑
α

Cα|ϕ̃α(|~prel |)|2

J =
E ′1E2p

2
2

|E2(p2 − Z cos θZ ,2) + E ′1p2|
ω

2EbeamEexB

~Z ≡ ~q + ~pCM
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(e, e ′pp)/(e, e ′p) ratio
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Missing-momentum distributions
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