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The EMC Effect:

a major open puzzle in nuclear physics
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Usmg the data on deep melastlc muon scattering on tron and deuterium the ratio of the nucleon structure functions 
FN(Fe)/FN(D) is presented. The observed x-dependence of this ratio is m disagreement with existing theoretical pred~ctlons. 

Many of  the recent deep inelastic muon and neu- 

trino nucleon scattering experiments have been per- 

formed using nuclear targets ltke carbon, marble, 

heavy liqmds or iron [1]. The data of  these experi- 

ments have been used to determine the nucleon struc- 

ture functions F N and x F  N, the sea-quark &strlbutlon 

(?q)N and gluon distribution gN over a wide range o f x  

and Q2. x is defined as x = Q2/2Mpv, where Q2 ts the 

square of  the four-momentum transfer from the lepton, 

Mp is the proton mass and v Is the energy transferred 

from the lepton to the nucleon. The observed pattern 

of  scahng violations has been found to be an good agree- 

ment with the theoretical expectations of  quantum 

chromodynamms. 

The results conventionally represent the dastribu- 

tlons of  quarks and gluons m nucleons whmh are era- 
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Quarks and nuclei are scale-separated.

Gigaelectron-Volt scale           ≫          Megaelectron-Volt scale

         (GeV)                                           (MeV)
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Short-range correlations are ubiquitous in nuclei.

Bound
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In my talk today:

1 Background

Review of structure functions and the EMC Effect

2 The SRC-EMC Connection

Could the EMC Effect stem from nuclear correlations?

3 Experiment

How to put this hypothesis to the test.
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Structure functions “veil our ignorance.”

?

“A successful theory must enable us to calculate the structure functions

and form factors. . .”

–David Griffiths, Intro to Elementary Particles
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We can connect structure functions

to internal parton distributions.
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xP+
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Proton structure is simplified

in the “infinite momentum frame”

P

xP
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Proton structure is simplified

in the “infinite momentum frame”

?

For very large energy and momentum transfers:

dσ

dΩdE ′
=
E ′α2

MEQ4

[

Q2

x
+ 2xM2

(

EE ′

Q2
− 1

)]

F2(x)
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Proton structure is simplified

in the “infinite momentum frame”

?

For very large energy and momentum transfers:

dσ

dΩdE ′
= K (E , θ,E ′)× F2(x)
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Proton structure is simplified

in the “infinite momentum frame”

?

For very large energy and momentum transfers:

dσ

dΩdE ′
= K (E , θ,E ′)×

∑

f

xe2f (q(x) + q̄(x))
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Momentum distribution, F2, can tell us about

the structure of the proton.
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Momentum distribution, F2, can tell us about

the structure of the proton.
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When learning about a new structure function

ask questions!

What experimental cross-section?

Inclusive e− deep-inelastic scattering

What connection to hadron structure?

Distribution of momentum fraction, x

In what limits is this connection accurate?

Q2 −→∞, ω −→∞
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The set-up can be configured to select x .
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Cross-sections can be measured

with high-resolution spectrometers.

Spe
ctr

om
ete

r
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Cross-sections can be measured

with high-resolution spectrometers.4352 J.GOMEZ et al. 49
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FlG. 4. 81„+C8-GeV/c spectrometer. The spectrometer consists of three quadrupoles (Q81, Q82, and Q83) and two bending

magnets (g8l and +82). particles scattered into the spectrometer aperture were focused onto a series of detectors located in a shield-

ed enclosure. Concrete shielding, not shown, was placed on top of Q82, 881,882, and Q83 to minimize the muon background com-

ing straight from the target into the detector enclosure.

ticles and hence allowed their kinematic reconstruction.

Finally, the scattered particles entered a 20-r.l.-thick elec-

tromagnetic calorimeter whose main purpose was to
differentiate electrons from background.

1. Cerenkov counter

The threshold Cerenkov counter was 2.79 m long with

0.04-cm-thick aluminum windows at each end. It was
placed forward of all other detectors to minimize the

amount of material before the counter and hence reduce

the probability that knock-on electrons produced by ~
mesons would fire the counter.

Cerenkov light produced by a charged particle with

momentum above threshold was focused by a four-

segment front-face mirror directly onto a S-in.-diam Am-

perex XP2041 photomultiplier. The photomultiplier

Gas Cerenkov Counter Wire Chambers

Scintillato

Shower Counter

PR

TA

~ I I

a ~

I

1 meter

FIG. 5. 8-GeV/c spectrometer particle detection system.

Particles entered from the left. The threshold Cerenkov counter

and the segmented lead-glass electromagnetic calorimeter

(shower counter) provided particle identification and triggering.

Ten planes of wire chambers were used to find the trajectories of
the scattered particles and hence allowed their kinematic recon-

struction.

front face was coated with a wavelength shifter [28] to in-

crease the photomultiplier detection efficiency in the ul-

traviolet.
The counter contained nitrogen gas at an average pres-

sure of 590 mmHg, which corresponds to momentum

thresholds of about 0.024 and 6.5 GeV/c for electrons
and pions, respectively. This operating pressure resulted

in an efficiency for electrons of 99.5%, with an efficiency

of less than 1% for pions with momentum less than 6.5
GeV/c.

2. Multimire proportional chambers

A set of ten planes of multiwire proportional chambers

[29] was used to reconstruct the trajectories of the scat-
tered particles in the region of the spectrometer focal

planes. These chambers replaced the hodoscope system

[21] used with the 8-GeV/c spectrometer by previous ex-

periments. They increased the maximum detectable

momentum bite of the spectrometer to about k4% from

the previous value of +2%. With ten chambers, the

track reconstruction efficiency was found to be 99.8%
with negligible background of false tracks due to spurious
hits. Five I' chambers with horizontal wires measured

momentum and azimuthal angle. Five T chambers with

wires alternately +30' to the vertical were used to mea-
sure the horizontal scattering angle. The anode wires

were connected to amplifiers, followed by two one-shot

delays, each timed to about 450 nsec. The first one-shot

delay determines the dead time of each wire. %&en the

main experimental trigger ffred, a common gate (100 nsec
wide) latched the delayed signals for subsequent readout

by CAMAC.

3. Lead-glass electromagnetic calorimeter

A lead-glass electromagnetic calorimeter [30] was used

to separate electrons from background (predominantly m

25



Cross-sections can be measured

with high-resolution spectrometers.
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Alternatively, trade resolution for acceptance.

ZEUS Experiment, DESY
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Mapping out the quark momentum in protons

has been a triumph of DIS and QCD.

H1 and ZEUS Combined PDF Fit
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Mapping out the quark momentum in protons

has been a triumph of DIS and QCD.

H1 and ZEUS Combined PDF Fit
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What is F2 for a nucleus?
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What is F2 for a nucleus?
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What is F2 for a nucleus?
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Nuclear F2 does not scale

with that of deuterium.
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SLAC Measurements (Gomez et al., 1994)
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Jefferson Lab Hall C (Seely et al., 1999)
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We use the slope to characterize

the size of the EMC Effect.
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The EMC Effect grows with nuclear size.
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Can Fermi-motion explain the effect?
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Can Fermi-motion explain the effect?
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How can we explain the EMC effect?

EMC Models

Nucleon
Modification

Nucleon
Motion

Nuclear
Pions
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How can we explain the EMC effect?

EMC Models

A few nucleons
modified a lot

Nucleon
Modification

Nucleon
Motion

Nuclear
Pions

Nucleus modifies
all nucleons
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In my talk today:

1 Background

Review of structure functions and the EMC Effect

2 The SRC-EMC Connection

Could the EMC Effect stem from nuclear correlations?

3 Experiment

How to put this hypothesis to the test.
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The nucleus as a box of fermions.
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The NN force has a repulsive core.
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The NN force has a repulsive core.
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The nucleus as a box of fermions.
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How often do nucleons correlate?

−→ About 4–5 times more than in deuterium.
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Proton-neutron pairs are much more likely

than proton-proton or neutron-neutron.
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Proton-neutron pairs are much more likely

than proton-proton or neutron-neutron.
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Proton-neutron pairs are much more likely

than proton-proton or neutron-neutron.
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“np-Dominance” has been confirmed

even in very neutron-rich neuclei.
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Key facts about short-range correlations

1 Universal feature of nuclei

2 Interactions within the pair ≫ rest of the nucleus

3 np-pairs predominate by 20×
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Key facts about short-range correlations

1 Universal feature of nuclei

2 Interactions within the pair ≫ rest of the nucleus

3 np-pairs predominate by 20×

4 Pair density correlates with the EMC Effect
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SRC pair density correlates with the EMC Effect.
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We studied this trend through data mining.

work led Barak Schmookler
MIT PhD 2016

Nature 566 p. 354 (2019)

Liquid Hydrogen
or Deuterium
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Measured quark distributions

and SRC pair density
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We measured the EMC Effect and pair densities.
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We measured the EMC Effect and pair densities.
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We measured the EMC Effect and pair densities.
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The SRC-EMC hypothesis predicts

“Universal Modification”

The modification of an SRC pair should be independent of nuclear

structure.
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Isolating the modification of an individual pair:

Assume only np pairs

FA2 = (Z − nASRC)F
p
2
+ (N − nASRC)F

n
2 + nASRC(F

p∗
2

+ F n∗2 )

abc
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Isolating the modification of an individual pair:

Assume only np pairs
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Isolating the modification of an individual pair:

ndsrc(∆F
p
2
+∆F n2 )

F d
2

=

[

REMC −
2(Z − N)

A

F
p
2

F d
2

−
2N

A

]

/ [a2 − 2N/A]
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Isolating the modification of an individual pair:
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EMC Data vary significantly by nucleus.
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The modification of SRC pairs is universal!
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In my talk today:

1 Background

Review of structure functions and the EMC Effect

2 The SRC-EMC Connection

Could the EMC Effect stem from nuclear correlations?

3 Experiment

How to put this hypothesis to the test.
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We need to measure the EMC Effect

in SRC nucleons specifically!

Bound
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We can isolate SRC nucleons by

“tagging” a correlated partner.

sca
tte

red
 el

ect
ron

recoiling spectator nucleon

fragments of
struck nucleon

1 Mom. of the scattered e− −→ determine quark momentum

2 Mom. of the spectator −→ determine if SRC configuration
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The SRC hypothesis predicts more modification

with larger spectator momentum.
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Two upcoming experiments at Jefferson Lab

will complement each other.

BAND

quarks in protons

detect recoil neutrons

JLab Hall B

Data taking just started!

LAD

quarks in neutrons

detect recoil protons

JLab Hall C

Data taking ≈ 2021
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DCJLab Hall B

CLAS12

Beamline
SVT

CTOF

Solenoid

FTOF
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“Backward Angle Neutron Detector”

will detect recoiling spectator neutrons

scattered

electron

jet from 

struck quark

Deuterium

Spectator
neutron

BAND

11 GeV e–

CLAS12

JLab Hall B
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BAND is made up of modular bars

made of scintillating plastic.

PMT PMT

neutron

tL − tR −→ position
1

2
(tL + tR) −→ flight time −→ momentum
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BAND is made up of modular bars

made of scintillating plastic.

2 m
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BAND just started taking data

and we see neutrons!

50− 0 50 100 150 200 250 300 350
0
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Neutrons!

Photons!

40 ns ≈ 250 MeV/c

σγ ≈ 0.3  [ns]

with photon path length correction
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The SRC hypothesis predicts more modification

with larger spectator momentum.
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The SRC hypothesis predicts more modification
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“Large Acceptance Detector”

will detect recoiling spectator protons.

scattered
electron

jet from 
struck quark

Deuterium

LAD

11 GeV e–
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HMS
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spectator
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LAD is three panels of scintillator bars,

reused from the original CLAS.
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The SRC hypothesis predicts more modification

with larger spectator momentum.

0.2

0.4

0.6

0.8

1

1.2

0 0.1 0.2 0.3 0.4 0.5

x = 0.6

No modification

Melnitchouk et al.
BAND

F
b
o
u
n
d

2
/
F

fr
e
e

2

Spectator momentum [GeV/c ]

98



The SRC hypothesis predicts more modification

with larger spectator momentum.
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To Recap:

The EMC Effect

The SRC-EMC hypothesis

Experimental tests 0.8
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SLAC data (1994)

EMC slope: 0.32

Fermi-motion
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x
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The EMC Effect

The SRC-EMC hypothesis
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We will have a definitive test of the SRC-EMC

hypothesis in the next few years!

Gigaelectron-Volt scale           ≫          Megaelectron-Volt scale

         (GeV)                                           (MeV)

Will it explain why scale separation is violated?
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