New 6 GeV CLAS Results

Barak Schmookler

Nature 566, 354-358 (2019)

DIS and the EMC Effect

DIS and the EMC Effect

Assumed to be equivalent to per-nucleon
Cross-Section ratio

Thomas Jefferson National Accelerator Facility (JLab)

The CLAS Detector in Hall B at JLab

The CLAS Detector in Hall B at JLab

Iron Target

Iron Target

We want to Extract Cross-Section Ratios to Deuterium

- Bin data in X_{B}

We want to Extract Cross-Section Ratios to Deuterium

- Bin data in x_{B}
- Apply the following corrections:

We want to Extract Cross-Section Ratios to Deuterium

- Bin data in x_{B}
- Apply the following corrections:
- Luminosity Corrections

We want to Extract Cross-Section Ratios to Deuterium

- Bin data in X_{B}
- Apply the following corrections:
- Luminosity Corrections
- Acceptance Corrections

We want to Extract Cross-Section Ratios to Deuterium

- Bin data in x_{B}
- Apply the following corrections:
- Luminosity Corrections
- Acceptance Corrections
- Radiative and Coulomb Corrections

We want to Extract Cross-Section Ratios to Deuterium

- Bin data in X_{B}
- Apply the following corrections:
- Luminosity Corrections
- Acceptance Corrections
- Radiative and Coulomb Corrections
- Bin-Centering Corrections

We want to Extract Cross-Section Ratios to Deuterium

- Bin data in x_{B}
- Apply the following corrections:
- Luminosity Corrections
- Acceptance Corrections
- Radiative and Coulomb Corrections
- Bin-Centering Corrections

$$
\left(\frac{\sigma(A) / A}{\sigma(D) / 2}\right)=\frac{Y_{A}^{\text {Weighted }}}{Y_{D}^{\text {Weighted }}-Y_{\text {Empty }}^{\text {Weighted }}}
$$

$$
\text { Weight }=\frac{1}{N O R M} \times \frac{R C \times C C \times I S O}{A C C} \times B C
$$

Our New EMC Effect Measurements

Kinematic Cut: $\mathrm{Q}^{2}>1.5 \mathrm{GeV}^{2}, \mathrm{~W}>1.8 \mathrm{GeV}, \mathrm{y}_{\mathrm{B}}<0.85$

Our New EMC Effect Measurements

Kinematic Cut: $\mathrm{Q}^{2}>1.5 \mathrm{GeV}^{2}, \mathrm{~W}>1.8 \mathrm{GeV}, \mathrm{y}_{\mathrm{B}}<0.85$

Combined statistical and point-to-point uncertainties: <1\%
Normalization uncertainties: ~2\%

Observed EMC-SRC Correlation

International Journal of High-Energy Physics
 CERNCOURIER

L. Weinstein et. al., Phys. Rev. Lett.06, 052301 (2011). O. Hen et al. Phys. Rev. C 85047301 (2012).
O. Hen et al., Rev. Mod. Phys. 89, 045002 (2017).

Our New a_{2} Measurements

Kinematic Cut: $\mathbf{Q}^{2}>1.5 \mathrm{GeV}^{2}$

Our New a_{2} Measurements

Kinematic Cut: $\mathbf{Q}^{2}>1.5 \mathrm{GeV}^{2}$

Bound = 'Quasi Free' + Modified SRCs

$$
F_{2}^{A}=\left(Z-n_{S R C}^{A}\right) F_{2}^{p}+n_{S R C}^{A}\left(F_{2}^{p *}+F_{2}^{n *}\right)
$$

$$
+\left(N-n_{S R C}^{A}\right) F_{2}^{n}
$$

$$
\frac{\sum_{i}^{2}}{\sum_{0}^{2}}
$$

Bound = 'Quasi Free' + Modified SRCs

$$
\begin{aligned}
F_{2}^{A} & =\left(Z-n_{S R C}^{A}\right) F_{2}^{p}+n_{S R C}^{A}\left(F_{2}^{p *}+F_{2}^{n *}\right) \\
& +\left(N-n_{S R C}^{A}\right) F_{2}^{n} \\
& =Z F_{2}^{p}+N F_{2}^{n}+n_{S R C}^{A}\left(\Delta F_{2}^{p}+\Delta F_{2}^{n}\right)
\end{aligned}
$$

$$
\Delta F_{2}^{p(n)}=F_{2}^{p *(n *)}-F_{2}^{p(n)}
$$

Bound = 'Quasi Free' + Modified SRCs

$$
\begin{aligned}
F_{2}^{A} & =\left(Z-n_{S R C}^{A}\right) F_{2}^{p}+n_{S R C}^{A}\left(F_{2}^{p *}+F_{2}^{n *}\right) \\
& +\left(N-n_{S R C}^{A}\right) F_{2}^{n} \\
& =Z F_{2}^{p}+N F_{2}^{n}+n_{S R C}^{A}\left(\Delta F_{2}^{p}+\Delta F_{2}^{n}\right)
\end{aligned}
$$

$$
\Delta F_{2}^{p(n)}=F_{2}^{p *(n *)}-F_{2}^{p(n)}
$$

$F_{2}^{d}=F_{2}^{p}+F_{2}^{n}+n_{S R C}^{d}\left(\Delta F_{2}^{p}+\Delta F_{2}^{n}\right)$

Our Model's Prediction for the EMC Effect

$$
\frac{F_{2}^{A} / A}{F_{2}^{d} / 2}=\left(a_{2}-2 \frac{N}{A}\right)\left(n_{S R C}^{d} \frac{\Delta F_{2}^{p}+\Delta F_{2}^{n}}{F_{2}^{d}}\right)+2 \cdot \frac{Z-N}{Z+N} \cdot \frac{F_{2}^{p}}{F_{2}^{d}}+2 \frac{N}{A}
$$

$$
a_{2}=\frac{n_{S R C}^{A} / A}{n_{S R C}^{d} / 2}
$$

Our Model's Prediction for the EMC Effect

$$
\frac{F_{2}^{A} / A}{F_{2}^{d} / 2}=\left(a_{2}-2 \frac{N}{A} \frac{\left(n_{S R C}^{d} \frac{\Delta F_{2}^{p}+\Delta F_{2}^{n}}{F_{2}^{d}}\right)}{\text { Universal? }}+2 \cdot \frac{Z-N}{Z+N} \cdot \frac{F_{2}^{p}}{F_{2}^{d}}+2 \frac{N}{A}\right.
$$

EMC Universal Modification Function

Focus on Neutron-Rich Nuclei

M.Duer, CLAS Collaboration, Nature 560, 617 (2018)

Focus on Neutron-Rich Nuclei

M.Duer, CLAS Collaboration, Nature 560, 617 (2018)

Focus on Neutron-Rich Nuclei

M.Duer, CLAS Collaboration, Nature 560, 617 (2018)

Calculate Per-Neutron (Per-Proton) Ratios

Per-Neutron: $\frac{\sigma_{A} / N}{\sigma_{D} / 1}$

Per-Proton: $\quad \frac{\sigma_{A} / Z}{\sigma_{D} / 1}$

Calculate Per-Neutron (Per-Proton) Ratios

Per-Neutron: $\frac{\sigma_{A} / N}{\sigma_{D} / 1}$

$$
\frac{F_{2}^{A} / N}{F_{2}^{d} / 1}=\left(a_{2}^{n}-1\right)\left(n_{S R C}^{d} \frac{\Delta F_{2}^{p}+\Delta F_{2}^{n}}{F_{2}^{d}}\right)+\left(\frac{Z}{N}-1\right) \cdot \frac{F_{2}^{p}}{F_{2}^{d}}+1
$$

Per-Proton: $\quad \frac{\sigma_{A} / Z}{\sigma_{D} / 1}$

$$
\frac{F_{2}^{A} / Z}{F_{2}^{d} / 1}=\left(a_{2}^{p}-\frac{N}{Z}\right)\left(n_{S R C}^{d} \frac{\Delta F_{2}^{p}+\Delta F_{2}^{n}}{F_{2}^{d}}\right)+\left(\frac{Z}{N}-1\right) \cdot \frac{F_{2}^{p}}{F_{2}^{d}}+\frac{N}{Z}
$$

New EMC-SRC Correlation

Isoscalar Corrections for DIS Ratios

Correction Factor:

$$
\frac{\frac{A}{2} \cdot\left(1+\frac{F_{n}^{n}}{F_{2}^{n}}\right)}{Z+N \cdot \frac{F_{2}^{n}}{F_{2}^{n}}}
$$

New EMC-SRC Correlation: Version II

New EMC-SRC Correlation: Version II

New EMC-SRC Correlation: Version II

Additional Slides

Uncertainties on DIS Cross-Section Ratios

Source	Point-to-point (\%)	Normalization (\%)
Time-Dependent Instabilities	-	1.0
Target Thickness and Cuts	-	$1.42-1.58$
Acceptance Corrections	$0.6(2,5)$	-
Radiative Corrections	-	0.5
Coulomb Corrections	0.5	0.1
Bin-Centering Corrections	0.78	-
Total		$1.81-1.94$

Uncertainties on QE Cross-Section Ratios

Source	Point-to-point (\%)	Normalization (\%)
Time-Dependent Instabilities	-	1.0
Target Thickness and Cuts	-	$1.42-1.58$
Acceptance Corrections	$1.2(2.5,10)$	-
Radiative Corrections	-	0.5
Coulomb Corrections	0.5	$0.2-1.0$
Bin-Centering Corrections	0.3	-
Kinematical Corrections	1.33	-
Total		$1.82-2.18$

Our New EMC Effect Measurements

EMC Slopes are Stable to Kinematic Cut

QE Results with Wider Binning

Kinematic Cut: $\mathrm{Q}^{\mathbf{2}}>1.5 \mathrm{GeV}^{2}$

Compare DIS on Deuterium

