

New 6 GeV CLAS Results

Barak Schmookler

Nature 566, 354-358 (2019)

03/23/19

MIT Meeting

DIS and the EMC Effect

DIS and the EMC Effect

Thomas Jefferson National Accelerator Facility (JLab)

The CLAS Detector in Hall B at JLab

The CLAS Detector in Hall B at JLab

5.01 GeV Incident Electrons

Liquid Hydrogen or Deuterium

C, Al, Fe, or Pb

Iron Target

Iron Target

• Bin data in $x_{\rm B}$

- Bin data in $x_{\rm B}$
- Apply the following corrections:

- Bin data in $x_{\rm B}$
- Apply the following corrections:
 - Luminosity Corrections

- Bin data in $x_{\rm B}$
- Apply the following corrections:
 - Luminosity Corrections
 - Acceptance Corrections

- Bin data in $x_{\rm B}$
- Apply the following corrections:
 - Luminosity Corrections
 - Acceptance Corrections
 - Radiative and Coulomb Corrections

- Bin data in $x_{\rm B}$
- Apply the following corrections:
 - Luminosity Corrections
 - Acceptance Corrections
 - Radiative and Coulomb Corrections
 - Bin-Centering Corrections

- Bin data in x_{B}
- Apply the following corrections:
 - Luminosity Corrections
 - Acceptance Corrections
 - Radiative and Coulomb Corrections
 - Bin-Centering Corrections

$$\left(\frac{\sigma(A)/A}{\sigma(D)/2}\right) = \frac{Y_A^{Weighted}}{Y_D^{Weighted} - Y_{Empty}^{Weighted}}$$

$$Weight = \frac{1}{NORM} \times \frac{RC \times CC \times ISO}{ACC} \times BC$$

Our New EMC Effect Measurements

Kinematic Cut: $Q^2 > 1.5 \text{ GeV}^2$, W > 1.8 GeV, $y_B < 0.85$

16

Our New EMC Effect Measurements

Kinematic Cut: $Q^2 > 1.5 \text{ GeV}^2$, W > 1.8 GeV, $y_B < 0.85$

17

Observed EMC-SRC Correlation

L. Weinstein et. al., Phys. Rev. Lett.06, 052301 (2011).
O. Hen et al. Phys. Rev. C 85 047301 (2012).
O. Hen et al., Rev. Mod. Phys. 89, 045002 (2017).

Our New a₂ Measurements

Kinematic Cut: Q²>1.5 GeV²

19

Our New a₂ Measurements

Kinematic Cut: Q²>1.5 GeV²

20

Bound = 'Quasi Free' + Modified SRCs

$$F_2^A = (Z - n_{SRC}^A)F_2^p + n_{SRC}^A(F_2^{p*} + F_2^{n*}) + (N - n_{SRC}^A)F_2^n$$

$$= ZF_2^p + NF_2^n + n_{SRC}^A(\Delta F_2^p + \Delta F_2^n)$$

$$\Delta F_2^{p(n)} = F_2^{p*(n*)} - F_2^{p(n)}$$

Bound = 'Quasi Free' + Modified SRCs

$$F_2^A = (Z - n_{SRC}^A)F_2^p + n_{SRC}^A(F_2^{p*} + F_2^{n*}) + (N - n_{SRC}^A)F_2^n$$

$$= ZF_2^p + NF_2^n + n_{SRC}^A(\Delta F_2^p + \Delta F_2^n)$$

$$\Delta F_2^{p(n)} = F_2^{p*(n*)} - F_2^{p(n)}$$

 $F_{2}^{d} = F_{2}^{p} + F_{2}^{n} + n_{SRC}^{d} (\Delta F_{2}^{p} + \Delta F_{2}^{n})$

Our Model's Prediction for the EMC Effect

$$\frac{F_2^A/A}{F_2^d/2} = (a_2 - 2\frac{N}{A})\left(n_{SRC}^d \frac{\Delta F_2^p + \Delta F_2^n}{F_2^d}\right) + 2 \cdot \frac{Z - N}{Z + N} \cdot \frac{F_2^p}{F_2^d} + 2\frac{N}{A}$$

$$a_2 = \frac{n_{SRC}^A/A}{n_{SRC}^d/2}$$

Our Model's Prediction for the EMC Effect

$$\frac{F_2^A/A}{F_2^d/2} = (a_2 - 2\frac{N}{A})\left(n_{SRC}^d \frac{\Delta F_2^p + \Delta F_2^n}{F_2^d}\right) + 2 \cdot \frac{Z - N}{Z + N} \cdot \frac{F_2^p}{F_2^d} + 2\frac{N}{A}$$

Universal?

EMC Universal Modification Function

Focus on Neutron-Rich Nuclei

M.Duer, CLAS Collaboration, Nature 560, 617 (2018)

Focus on Neutron-Rich Nuclei

M.Duer, CLAS Collaboration, Nature 560, 617 (2018)

Focus on Neutron-Rich Nuclei

M.Duer, CLAS Collaboration, Nature 560, 617 (2018)

Calculate Per-Neutron (Per-Proton) Ratios

Per-Neutron: $\frac{\sigma_A/N}{\sigma_D/1}$

 $rac{\sigma_A/Z}{\sigma_D/1}$

Calculate Per-Neutron (Per-Proton) Ratios

Per-Neutron:

$$rac{\sigma_A/N}{\sigma_D/1}$$

$$\frac{F_2^A/N}{F_2^d/1} = (a_2^n - 1)(n_{SRC}^d \frac{\Delta F_2^p + \Delta F_2^n}{F_2^d}) + (\frac{Z}{N} - 1) \cdot \frac{F_2^p}{F_2^d} + 1$$

$$rac{\sigma_A/Z}{\sigma_D/1}$$

$$\frac{F_2^A/Z}{F_2^d/1} = (a_2^p - \frac{N}{Z})(n_{SRC}^d \frac{\Delta F_2^p + \Delta F_2^n}{F_2^d}) + (\frac{Z}{N} - 1) \cdot \frac{F_2^p}{F_2^d} + \frac{N}{Z}$$

New EMC-SRC Correlation

Isoscalar Corrections for DIS Ratios

Correction Factor:

$$\frac{\frac{A}{2} \cdot \left(1 + \frac{F_2^n}{F_2^p}\right)}{Z + N \cdot \frac{F_2^n}{F_2^p}}$$

 $F_{2}^{d} = F_{2}^{p} + F_{2}^{n} + n_{SRC}^{d} (\Delta F_{2}^{p} + \Delta F_{2}^{n})$

New EMC-SRC Correlation: Version II

New EMC-SRC Correlation: Version II

New EMC-SRC Correlation: Version II

Additional Slides

Uncertainties on DIS Cross-Section Ratios

Source	Point-to-point (%)	Normalization (%)
Time-Dependent Instabilities		1.0
Target Thickness and Cuts		1.42 - 1.58
Acceptance Corrections	0.6(2,5)	
Radiative Corrections		0.5
Coulomb Corrections		0.1
Bin-Centering Corrections	0.5	
Total	0.78	1.81 - 1.94

Uncertainties on QE Cross-Section Ratios

Source	Point-to-point (%)	Normalization (%)
Time-Dependent Instabilities		1.0
Target Thickness and Cuts		1.42 - 1.58
Acceptance Corrections	1.2 (2.5, 10)	
Radiative Corrections		0.5
Coulomb Corrections		0.2 - 1.0
Bin-Centering Corrections	0.5	
Kinematical Corrections	0.3	
Total	1.33	1.82 - 2.18

Our New EMC Effect Measurements

EMC Slopes are Stable to Kinematic Cut

QE Results with Wider Binning

Kinematic Cut: Q²>1.5 GeV²

Compare DIS on Deuterium

