Nuclear partonic structure from breakup measurements A >= 2

Exploring nuclear effects and neutron structure

Raphaël Dupré

European Research Council Established by the European Commission

Tagging Overview

Deuterium (polarized or not)

- Study pion and kaon content (TDIS @ JLab)
- Study the unpolarized neutron (Bonus @ JLab)
- Study nuclear effects and SRC (BAND @ JLab)

Helium-3 (polarized)

- Effective polarized neutron
 - Understudy for JLab and EIC

Helium-4

- Study bound nucleons (ALERT @ JLab)
- Study of EMC and SRC (ALERT @ JLab)

Heavy targets

- Centrality tagging

Tagging Nuclear Reactions

Tagged processes

- When we detect nuclear fragments in coincidence
- Mix classic nuclear physics with quark level observables

Why tagging?

- To control final state interaction
- To control the initial state
 - Access to the nucleon's virtuality

Can we do tagging?

- Done only for deuterium
 - Bonus measurement from CLAS
- Need a recoil detector (fixed target)

 \rightarrow ALERT

Or a forward detector (collider)

Tagging at JLab with ALERT

A Low Energy Recoil Tracker

- Optimized for low momentum measurement
- Placed in the center of CLAS12 (Hall-B)
- Around a thin gaseous target

Composed of

- An hyperbolic drift chamber

• Stereo angles give the z-axis resolution

- Scintillators

- For Time-of-Flight measurement
- Energy measurement for good PID

ALERT specifications

Capabilities for very low momentum detection

- As low as 70 MeV/c for protons and 240 MeV/c for 4He
- Detection at large angles in forward and backward directions (25° from the beam)

Capabilities to handle high rates

- Luminosity up to 10³⁵ cm⁻²s⁻¹

Excellent PID and resolution

- Can identify isotopes of light nuclei precisely
- The only way to go beyond A = 2

Testing tagging models

Not sexy, but necessary

- First, test that the theory is under control
- CLAS12 + ALERT give a large momentum and angle range to test

First test of the process for A>2

- It is key to generalize the method beyond deuterium
- Allows to access higher Fermi momentum and to generalize any finding

Link EMC effect to nucleon momentum

Tagging links EMC to nucleon kinematics

- Linked to virtuality
- Differentiate mean field from SRC

Test models and more

- Comparison between deuterium and helium is key
- It unequivocally resolve the link between EMC and nucleon momentum

Different nuclei

- Cover different momentum ranges
- Mean field vs SRC

Mean field nucleon vs SRC nucleons

 10^{4}

 10^{2}

How to set a limit?

- **Different arguments** can be made
- It will be nuclei dependent

How relevant is this limit?

- Does only momentum or virtuality matters?
- $^{2}\mathrm{H}$ 10^{0} $\rho(k)~(fm^3)$ ρ_p 10-2 D-wave 10^{-4} S-wave 10-6 10-8 2 4 8 $k (fm^{-1})$
- Or the nucleon correlation matters as well?
 - If yes in what direction?

How can we resolve these questions?

- Tagged processes (A-1 tagging mainly here)
- Generalized parton distributions

10

Other opportunities with tagging

Tagged DIS gives many other opportunities to test specific EMC models

- In some binding models, the EMC effect is due to the cancellation of much larger effects
- These can be tested with spectator detection

Tagged DIS can also be used for flavor selection

- We can test how the d/u ratio changes in the nuclear medium

GPDs & Nuclei

Generalizing the parton distributions

- Three dimensions: x, ξ and t
- Spin-0 → 1 GPD // Spin-1/2 → 4 GPDs

Deep virtual Compton scattering

- The simplest access to GPDs
- Allows the tomography of the target

In the nucleus

- Coherent and incoherent channels
 - Similar to elastic and quasi-elastic

Perfect probe into the EMC effect

- Offer localization with the t dependence

Goes much beyond

- Can look at the nuclei without the nucleons

CLAS Incoherent DVCS

Measurement of CLAS

- Proton bound in helium target

Gives a generalized EMC

- Strongly suppressed in particular in the anti-shadowing region
- Strange behavior compared to the models

A New kind of EMC effect?

- It could be a nuclear effect
- Or it could be due to final state interactions
 - Can be very complicated in DVCS

Can we resolve this with tagging?

- We will try using ALERT

Tagged DVCS

Tagging DVCS

- To better control the reaction
- Both initial and final state are better under control

Proposed for JLab 12 GeV

 Similar method can be used for all sort of processes, quasi-elastic etc.

Tagged Neutron DVCS

In parallel to Bonus 12

- Start running in two weeks
- Large statistics
 - As efficient as direct neutron detection

Unique insight on FSI

Tagging at the EIC

Kinematics of colliders makes it much simpler

- Allows detection of both proton and neutrons
- As any nucleus with a magnetic rigidity different from the beam
 - Raises questions for A-2 tagging in view of the pn dominance in SRC pairs

Allows tagging and polarized target at the same time

- Access to effective target of polarized neutrons

Gives access to many body tagging

- For large nuclei, the A-1 contribution becomes small
- Other information can be gathered

Tagging in Many Body Systems

Centrality measurements are now standard in A-A

- They get more and more evolved
- Also applied in p-A
 - With some caveats

We need such measurements at EIC

- Else we are dominated by surface events
- Effort to create proper Monte-Carlo tools with Beagle
- Plans to use E665 data from Fermi Lab to calibrate

Impacts the beam line design

- This is a good time to worry about this

Workshop in Paris-Saclay (14th of Sept. to 23rd of Oct.)

Six weeks focused on tagging (INT style long workshop)

- Exploring QCD with Tagged Processes

Different focus each week

- Many body tagging, hadronization and measuring centrality in AA, pA and eA
- Experimental progress on tagged processes, in fixed target and collider settings
- Tagging light nuclei to understand nuclear effects
- Tagging light nuclei to access pion, kaon and neutron structure
- The future of tagging in fixed and collider kinematics
- Treating final state interactions in tagged processes

Each week starts with long review talk from an expert of the field

- Aimed at students, postdocs and people new to the domain

Support available

- Local expenses for attendees, including PhD students
- Contact us: W. Cosyn, R. Dupre, C. Keppel, M. Sargsian

https://www.universite-paris-saclay.fr/fr/exploring-qcd-with-tagged-processes

Summary

We do not understand the link between the nucleon and quark structure of nuclei

- We need new observables to resolve this issue

Tagged process offer clean new observables

- To help understand the EMC effect
- And many other features of the nucleus

EIC will extend these studies much more

- Simplify tagging with proper instrumentation
- Tagging will be the tool of choice for centrality estimation

Come in the Fall discuss all these at Univ. Paris-Saclay

- 14th of Sept. to 23rd of Oct