Bound and free nucleon structure

Efrain Segarra

Exploring QCD with light nuclei at EIC

Jan 22, 2020

Structure Functions of a free proton

$$\frac{d\sigma}{dxdQ^2} = \frac{4\pi\alpha^2}{Q^4} \left[\left(1 - y - \frac{m_p^2 y^2}{Q^2} \right) \frac{F_2(x, Q^2)}{x} + y^2 F_1(x, Q^2) \right]$$

F₂ of free proton

F₂ of free proton

 $F_2 \to x \sum e_i^2 \left(q_i(x) + \bar{q}_i(x) \right)$

From measured σ to PDFs $\frac{d\sigma}{dxdQ^2} \left\{ f_2^p(x,Q^2) \right\} f_i^p(x,Q^2)$

From nuclear DIS to nuclear PDFs

 $F_2^n(x,Q^2)$ $\frac{d\sigma^A}{dxdQ^2}$ $F_2^A(x,Q^2)$ $f_i^A(x, Q^2)$

Outline

- Universal modification of SRC nucleons
- Free neutron structure & A=3
- Tagged DIS at Jefferson Lab 12 GeV
- Nuclear PDFs for the EIC

So what's the deal with bound nucleons?

They are... well, complicated

An open question since 90's

Using insight recently gained on origin on EMC effect, we propose another approach

Goal: constrain **high-x**, low Q² free **and** bound nucleon structure **consistently** with **all** nuclear DIS and QE data

Recent high precision (e,e') data

Schmookler et al. Nature (2019)

Nuclear EMC effect

What else do we know about the nucleus?

momentum - Center-ofmass momentum

- Relative

- Pair abundance

⁻ Pair type

EMC-SRC hypothesis proposes universal modification

 $F_2^A = ZF_2^p + NF_2^n + n_{SRC}^A \left(\Delta F_2^p + \Delta F_2^n\right)$

Nucleus-independent

EMC-SRC hypothesis proposes universal modification

$$F_{2}^{A} = ZF_{2}^{p} + NF_{2}^{n} + n_{SRC}^{A} \left(\Delta F_{2}^{p} + \Delta F_{2}^{n}\right)$$
$$F_{2}^{d} = F_{2}^{p} + F_{2}^{n} + n_{SRC}^{d} \left(\Delta F_{2}^{p} + \Delta F_{2}^{n}\right)$$
$$= (Z - N)F_{2}^{p} + NF_{2}^{d} + \left(n_{SRC}^{A} - Nn_{SRC}^{d}\right) \left(\Delta F_{2}^{p} + \Delta F_{2}^{n}\right)$$

Treat **all** bound nucleon structure **consistently** with **all** nuclear DIS and QE data

 F_2^A

Extract universal modification using Bayesian inference via Hamiltonian Markov Chain Monte Carlo

$$\frac{F_2^A}{F_2^d} = (Z - N)\frac{F_2^p}{F_2^d} + N + \left(\frac{n_{SRC}^A}{n_{SRC}^d} - N\right)\frac{n_{SRC}^d}{F_2^d}\left(\Delta F_2^p + \Delta F_2^n\right)$$

Universal modification function

E.P. Segarra et al., arXiv: 1908.02223 (2019) 18

Extract universal modification using Bayesian inference via Hamiltonian Markov Chain Monte Carlo

$$\frac{F_2^A}{F_2^d} = (Z-N)\frac{F_2^p}{F_2^d} + N + \left(\frac{n_{SRC}^A}{n_{SRC}^d} - N\right)\frac{n_{SRC}^d}{F_2^d}\left(\Delta F_2^p + \Delta F_2^n\right)$$

Universal modification function

E.P. Segarra et al., arXiv: 1908.02223 (2019) 19

Extract universal modification using Bayesian inference via Hamiltonian Markov Chain Monte Carlo

$$\frac{F_2^A}{F_2^d} = (Z - N) \frac{F_2^p}{F_2^d} + N + \left(\frac{n_{SRC}^A}{n_{SRC}^d} - N\right) \frac{n_{SRC}^d}{F_2^d} \left(\Delta F_2^p + \Delta F_2^n\right)$$

Universal modification function

0.8

0.9

0.8

0.2

F₂^p/F₂^d Data

E.P. Segarra et al., arXiv: 1908.02223 (2019) 20

Extract universal modification using Bayesian inference via Hamiltonian Markov Chain Monte Carlo

$$\frac{F_2^A}{F_2^d} = (Z - N) \frac{F_2^p}{F_2^d} + N + \left(\frac{n_{SRC}^A}{n_{SRC}^d} - N\right) \frac{n_{SRC}^d}{F_2^d} \left(\Delta F_2^p + \Delta F_2^n\right)$$

Universal modification function

EMC-DIS Data

F₂^p/F₂^d Data

a₂ Pair Abundances

E.P. Segarra et al., arXiv: 1908.02223 (2019) 21

Extract universal modification using Bayesian inference via Hamiltonian Markov Chain Monte Carlo

$$\frac{F_2^A}{F_2^d} = (Z - N) \frac{F_2^p}{F_2^d} + N + \left(\frac{n_{SRC}^A}{n_{SRC}^d} - N\right) \frac{n_{SRC}^d}{F_2^d} \left(\Delta F_2^p + \Delta F_2^n\right)$$

Consistent, simultaneous global extraction of 31 model parameters sampled from joint-posterior distribution

$$f_{univ}(x)$$
 $R_{pd}(x)$ \vec{s}_i $\vec{a}_2(A/d)$

E.P. Segarra et al., arXiv: 1908.02223 (2019) 22

Reproduce the data remarkably well

E.P. Segarra et al., arXiv: 1908.02223 (2019) 23

Reproduce the data remarkably well

E.P. Segarra et al., arXiv: 1908.02223 (2019) 24

Reproduce the data remarkably well

E.P. Segarra et al., arXiv: 1908.02223 (2019) 25

Universal modification function of nuclei

(All 31 model parameters simultaneously extracted from joint posterior)

E.P. Segarra et al., arXiv: 1908.02223 (2019) 26

How are protons and neutrons modified

Schmookler et al. Nature (2019)

- Universal modification of SRC nucleons
- Free neutron structure & A=3 ——
- Tagged DIS at Jefferson Lab 12 GeV

learn so far

What did we

Where do we go from here

Nuclear PDFs for the EIC

What about neutron structure F_2 ?

Past approaches to get F_2^n

$$F_2^d \approx F_2^p + F_2^n$$

How to treat deuterium to get out neutron?

Smearing, off-shell, etc..

Past approaches to get F_2^n

 $F_2^d \approx F_2^p + F_2^n$

Large-x informs us on valence structure

$$F_2^d \approx F_2^p + F_2^n$$

EMC-SRC hypothesis proposes universal modification

$$F_{2}^{A} = ZF_{2}^{p} + NF_{2}^{n} + n_{SRC}^{A} \left(\Delta F_{2}^{p} + \Delta F_{2}^{n}\right)$$
$$F_{2}^{d} = F_{2}^{p} + F_{2}^{n} + n_{SRC}^{d} \left(\Delta F_{2}^{p} + \Delta F_{2}^{n}\right)$$
$$(Z - N) F_{2}^{p} + NF_{2}^{d} + \left(n_{SRC}^{A} - Nn_{SRC}^{d}\right) \left(\Delta F_{2}^{p} + \Delta F_{2}^{n}\right)$$

SKC

Treat all bound nucleon structure consistently with all nuclear DIS and QE data

 $F_2^A =$

Extracting free neutron structure $F_2^d = F_2^p + F_2^n + n_{SRC}^d \left(\Delta F_2^p + \Delta F_2^n\right)$

E.P. Segarra et al., arXiv: 1908.02223 (2019) 34

Another way to access F_2^n from A=3 nuclei

(MARATHON Experiment, Hall A Jefferson Lab)

$$\frac{F_2^n}{F_2^p} = \frac{2\mathscr{R} - F_2^{^3He}/F_2^{^3H}}{2F_2^{^3He}/F_2^{^3H} - \mathscr{R}}$$

Measured

Theoretical
$$\Re = \frac{F_2^{^{3}He}}{2F_2^p + F_2^n} \cdot \frac{F_2^p + 2F_2^n}{F_2^{^{3}H}}$$

EMC Prediction for A=3

Model discrimination once MARATHON publishes

E.P. Segarra et al., arXiv: 1908.02223 (2019) 36
Super-ratio theoretical input

E.P. Segarra et al., arXiv: 1908.02223 (2019) 37

How sensitive is result to theory model?

$$\frac{F_2^n}{F_2^p} = \frac{2\mathcal{R} - F_2^{^3He}/F_2^{^3H}}{2F_2^{^3He}/F_2^{^3H} - \mathcal{R}}$$

Use our model prediction

E.P. Segarra et al., arXiv: 1908.02223 (2019) 38

Degeneracy between F_2^n/F_2^p and offshell

E.P. Segarra et al., arXiv: 1908.02223 (2019) 39

- Universal modification of SRC nucleons
- Free neutron structure & A=3
- Tagged DIS at Jefferson Lab 12 GeV
- Nuclear PDFs for the EIC

Where do we go from here

Is modification really driven by nucleons in SRC states?

$$F_2^A = ZF_2^p + NF_2^n + n_{SRC}^A \left(\Delta F_2^p + \Delta F_2^n\right)$$

Inclusive DIS off proton

Inclusive DIS off proton

DIS off bound nucleon in deuterium

DIS off bound nucleon in deuterium

Can address with spectator-tagging

BAND Experiment

Backward **A**ngle **N**eutron **D**etector Hall B, Jefferson Lab 12 GeV (RG-B)

(my thesis work)

BAND with CLAS12

140 scintillator bars

- 5 layers thick (36cm total) with veto layer (2cm thick)
- ToF resolutions < 250 ps
- 3 meters upstream of target, coverage in θ ~ 155-176°
- Design neutron efficiency ~35% and momentum resolution ~1.5%
- Laser system for calibrations

Bar Resolutions

(my thesis work)

Neutrons in BAND!

Preliminary look at data

Inclusive d(e,e')

~3.5% of data* (my thesis work)

Low-x' region should have no modification

(my thesis work)

Counts above background

55

So far, good statistics in hi-x' region

(my thesis work)

Simulated kinematic reach

 $Q^2 > 2 \text{ GeV}^2$ $\cos \theta_{qn} > 110 \text{ deg}$ W' > 1.8 GeV $p_n > 200 \text{ MeV}$

- Universal modification of SRC nucleons
- Free neutron structure & A=3
- Tagged DIS at Jefferson Lab 12 GeV
- Nuclear PDFs for the EIC

Where do we go from here

From nuclear DIS to nuclear PDFs

 $F_2^n(x, Q^2)$ $d\sigma^A$ $dxdQ^2$ $F_2^A(x,Q^2)$ $f_i^A(x,Q^2)$

Hi-x and nuclear PDFs for EIC

 $f_i^A(x, Q^2)$

nCTEQ Collaboratioin

(Collaborative work with Fred Olness, Aleksander Kusina, Ingo Schienbein, Thia Keppel, Timothy Hobbs, Karol Kovarik,, and many more)

How to extract nuclear PDFs?

Keeping in mind the limitations on constraints

What is measured:

$$F_2^A(x,Q^2) \sim \sum_i f_i^{(A,Z)}(x,Q^2)$$

What is constrained: $f_i^{(A,Z)}(x,Q) = \frac{Z}{A} f_i^{p/A}(x,Q) + \frac{A-Z}{A} f_i^{n/A}(x,Q)$

Effective quantities:

$$xf_i^{p/A} \sim x^a(1-x)^b(\dots)$$

While effective PDFs have some variance between groups

Full Nuclear PDFs are very similar

Majority of data in nCTEQ15 is isoscalar corrected No sensitivity to difference of u_v,d_v

Moving to valence region

 ${\mathcal X}$

Challenges in valence region

Requires lower (Q²,W) cuts

- Describe JLab6 data with nCTEQ15 data consistently
- Target-mass and higher-twist effects
- Flexible x-parameterization
- Assumption of A-dependence
- Deuterium nuclear corrections

x- and A- parameterization

x- and A- parameterization

1.15

$$\chi^2 = 56.3$$

1.10
 $N_{exp,9990} = 22$
1.05
 $(Q^2, W) > (1.3,2)$
 $(\sigma_d/2)$
1.00
 $(Q^2, W) > (1.3,2)$
 $(Q^2, W) > (1.3,1.7)$
 $(Q^2, W) >$

JLab6, Hall C

Stay tuned for nCTEQ 16 (?) PDFs

- Tackle hi-x and low Q²
- Update parameterization for hi-x and low-A
- Update free proton PDFs
- Address TMC at hi-x and low Q²
- Understand sensitivity to deuterium nuclear corrections

Addressing valence-region for EIC

Summary

- Universal modification of SRC nucleons
- Free neutron structure & A=3
- Tagged DIS at Jefferson Lab 12 GeV
- Nuclear PDFs for the EIC

Summary

- Universal modification of SRC nucleons
- Free neutron structure & A=3
- Tagged DIS at Jefferson Lab 12 GeV
- Nuclear PDFs for the EIC

Summary

- Universal modification of SRC nucleons
- Free neutron structure & A=3
- Tagged DIS at Jefferson Lab 12 GeV
- Nuclear PDFs for the EIC

Summary

- Universal modification of SRC nucleons
- Free neutron structure & A=3
- Tagged DIS at Jefferson Lab 12 GeV
- Nuclear PDFs for the EIC

Summary

- Universal modification of SRC nucleons
- Free neutron structure & A=3
- Tagged DIS at Jefferson Lab 12 GeV 1.15 $\chi^2 = 56.3$ $(\sigma_C/12)$ $N_{exp,9990} = 22$ 1.10 $(\sigma_d/2)$ Nuclear PDFs for the EIC 1.05 $(Q^2, W) > (1.3, 2)$ 1.00 0.95 $(Q^2, W) > (1.3, 1.7)$ 0.90 ${\mathcal X}$ 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 75 0.1

Thanks! Questions?

Efrain Segarra

Exploring QCD with light nuclei at EIC

Jan 22, 2020

Back up

EMC - SRC

EMC Models across the decades

Proper treatment of 'known' nuclear effects

- Fermi-smearing
 - Nuclear binding
- Bound nucleons are 'larger' than free nucleons
 - Larger volume = 'slower' quarks
 - Mean-field effect
 - Momentum independent

Short-range correlations

- Beyond mean-field effect
- Momentum dependent
- 'A few nucleons modified a lot'

High virtuality and local density

Inclusive a2

K.S. Egiyan et al. PRL 96, 082501(2006)

SRCs

Forbidden

1.6

1.4

1.8

2

Bound nucleons in EFT and QCD 1. EFT: $F_2^A(x,Q^2) = F_2^N(x,Q^2) + g_2(A,\Lambda) \cdot f_2(x,Q^2,\Lambda)$ = Free + Factorized Modification Bound 2. QCD: $|N\rangle_{bound} = |N\rangle + (\varepsilon_{bound} - \varepsilon)|N^*\rangle$

Hen, Miller, Piasetzky and Weinstein, Reviews of Modern Physics (2017).

Chen, Detmold, Lynnm, and Schwenk, PRL (2018).

Proton Wave-Function in QCD

$$|p\uparrow\rangle = \frac{1}{\sqrt{2}} |u\uparrow(ud)_{S=0}\rangle + \frac{1}{\sqrt{18}} |u\uparrow(ud)_{S=1}\rangle - \frac{1}{3} |u\downarrow(ud)_{S=1}\rangle$$
$$-\frac{1}{3} |d\uparrow(uu)_{S=1}\rangle + \frac{\sqrt{2}}{3} |d\downarrow(uu)_{S=1}\rangle$$

SU(6) predict d/u = 0.5
 ◇ N - Δ mass difference implies SU(6) is broken

Nucleon Model	F2n / F2p	d / u
SU(6)	2/3	0.5

Brodsky et al., Nucl. Phys. B441, 197 (1995) ₁ Melnitchouk and Thomas, Phys. Lett. B377, 11 (1996)

Proton Wave-Function in QCD

$$|p\uparrow\rangle = \frac{1}{\sqrt{2}} |u\uparrow(ud)_{S=0}\rangle + \frac{1}{\sqrt{18}} |u\uparrow(ud)_{S=1}\rangle - \frac{1}{3} |u\downarrow(ud)_{S=1}\rangle - \frac{1}{3} |d\uparrow(uu)_{S=1}\rangle + \frac{\sqrt{2}}{3} |d\downarrow(uu)_{S=1}\rangle$$

SU(6) predict d/u = 0.5
◇ N - Δ mass difference implies SU(6) is broken
Diquark dominance with S_z=0 predict d/u = 0.2

Nucleon Model	F2n / F2p	d / u
SU(6)	2/3	0.5
pQCD (S _z =0)	3 / 7	0.2

Brodsky et al., Nucl. Phys. B441, 197 (1995) ₂ Melnitchouk and Thomas, Phys. Lett. B377, 11 (1996)

Proton Wave-Function in QCD

$$|p\uparrow\rangle = \frac{1}{\sqrt{2}} |u\uparrow(ud)_{S=0}\rangle + \frac{1}{\sqrt{18}} |u\uparrow(ud)_{S=1}\rangle - \frac{1}{3} |u\downarrow(ud)_{S=1}\rangle - \frac{1}{3} |d\uparrow(uu)_{S=1}\rangle + \frac{\sqrt{2}}{3} |d\downarrow(uu)_{S=1}\rangle$$

• SU(6) predict d/u = 0.5

- ◇ N ∆ mass difference
 implies SU(6) is broken
- Diquark dominance with S_z=0 predict d/u = 0.2
- Scalar (S=0) diquark
 dominance predict d/u = 0

Nucleon Model	F2n / F2p	d / u
SU(6)	2/3	0.5
pQCD (S _z =0)	3 / 7	0.2
Scalar Diquark	1/4	0

Brodsky et al., Nucl. Phys. B441, 197 (1995) ₃ Melnitchouk and Thomas, Phys. Lett. B377, 11 (1996)

Future experiments

Flavor-tagging of EMC effect

LOI: Next Generation Tritium Experiments in CLAS12

D. Gaskell (Spokesperson), D.W. Higinbotham (Spokesperson), D. Meekins (Spokesperson) Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA

A. Ashkenazi, A. Denniston, R. Cruz-Torres, O. Hen (Spokesperson), D. Nguyen,
 A. Papadopoulou, J. Pybus, A. Schmidt, E.P. Segarra
 Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

D. Dutta (Spokesperson), Mississippi State University, Mississippi State, Mississippi 29762, USA

> Z. Ye (Spokesperson), Argonne National Lab, Lemont, IL 60439

F. Hauenstein, M. Khachatryan, and L.B. Weinstein (Spokesperson) Old Dominion University, Norfolk, Virginia 23529, USA

> E. Piasetzky Tel-Aviv University, Tel Aviv 69978, Israel

S. Sirca (Spokesperson), and M. Mihovilovic (Spokesperson) University of Ljubljana and Jozef Stefan Institute, 1000 Ljubljana, Slovenia

> T. Kolar Jozef Stefan Institute, 1000 Ljubljana, Slovenia

 u_v, d_v modification difference

Upcoming Nuclear Targets at CLAS

Exclusive Studies of Short Range Correlations in Nuclei using CLAS12 Proposal to Jefferson Lab PAC 46

A. Ashkenazy, R. Cruz Torres, S. Gilad, O. Hen (contact person),
 G. Laskaris, A. Papadopoulou, M. Patsyuk, A. Schmidt (co-spokesperson),
 B. Schmookler, and E.P. Segarra
 Massachusetts Institute of Technology, Cambridge, MA

+ many others

d He-4 C-12 Si-27 Ar-40 Ca-40 Ca-48 Sn-119 Pb-208

Numerous beam energies; majority of days at 6.6 GeV

X

 $\boldsymbol{\chi}$

nPDF

Have to make some sacrifices...

Must parametrize nuclear dependence, combine all nuclear DIS data, and make assumptions

$$xf_i^A(x,Q_0) \sim x^a(\dots)(1-x)^b$$

Have to make some sacrifices...

Must parametrize nuclear dependence, combine all nuclear DIS data, and make assumptions

$$xf_i^A(x, Q_0) \sim x^a(\dots)(1-x)^b$$

(nCTEQ15) (EPPS16)
$$a \sim a_1 + a_2(1 - A^{-a_3}) \qquad a(A) \sim a(A_{\text{ref}}) \left(\frac{A}{A_{\text{ref}}}\right)^{\gamma_a}$$

$$F_2^A(x,Q^2) = \sum_i f_i^{(A,Z)}(x,Q^2) \otimes C_{2,i}(x,Q^2)$$

... and be robust enough to describe the data

nCTEQ15 Framework

$$xf_i^{p/A} = c_0 x^{c_1} (1-x)^{c_2} e^{c_3 x} (1+e^{c_4} x)^{c_5}$$

$$c_k \to c_k(A) = c_{k,0} + c_{k,1} \left(1 - A^{-c_{k,2}} \right)$$

No deuterium nuclear corrections

u_v,d_v fitted independently

Data used in nCTEQ15

Majority of data in nCTEQ15 is isoscalar corrected

	nNNPDF1.0 EPJC79(2019471	EPPS16 EPJC77(2017)163	nCTEQ15 PRD93(2016)085037	KA15 PRD93(2016)014036	DSSZ12 PRD85(2012)074028	EPS09 JHEP0904(2009)065
IA DIS	✓	 ✓ 	✓	✓	✓	✓
DY in p+A	×	~	 Image: A set of the set of the	✓	~	~
RHIC π d+Au	×	~	 	×	~	~
vA DIS	×	~	×	×	~	×
DY in π+A	×	~	×	×	×	×
LHC p+Pb dijets	×	~	×	×	×	×
LHC p+Pb W,Z	×	~	×	×	×	×

Order in a_s	NNLO	NLO	NLO	NNLO	NLO	NLO
Q-cut in DIS	1.87 GeV	1.3 GeV	2 GeV	1 GeV	1 GeV	1.3 GeV
W-cut	3.53 GeV	-	3.5 GeV	-	-	-
Data points	451	1811	708	1479	1579	929
Free parameters	Neural Net	20	16	16	25	15
Error tolerance	MC replica	52	35	N.N.	30	50
Proton baseline	NNPDF3.1	CT14NLO	~CTEQ6.1	JR09	MSTW08	CTEQ6.1
Mass scheme	FONLL-B	GM-VFNS	GM-VFNS	ZM-VFNS	GM-VFNS	ZM-VFNS
Flavour sep.	-	val.+sea	valence	-	-	-

Extraction and assessment of fit

 χ^2 minimization on ~ 16 parameters

Assessing quality

Most PDF extractions stop at x=0.6-0.7

x- and A- parameterization

103