

Neutron GPD fixed-target measurements at JLab

Professor Angela Biselli Fairfield University Fairfield, CT, USA

Exploring QCD with light nuclei at EIC

Stony Brook University, Stony Brook, January 21-24 2020

Generalized Parton Distributions

3-dimensional quark structure of nucleon

Elastic Scattering

Transverse quark distributions in coordinate space

 $f(\mathbf{x})$

Deep inelastic scattering

Longitudinal quark distributions in momentum space

Deeply exclusive scattering GPDs

Fully-correlated quark distribution in both coordinate and momentum space -

Exploring QCD with light nuclei at EIC, Stony Brook University, January 21 2020

Deeply Virtual Compton Scattering and GPDs

Deeply Virtual Compton Scattering and GPDs

Exploring QCD with light nuclei at EIC, Stony Brook University, January 21 2020

Chiral even: Quark helicity is conserved

$\sigma(eN \rightarrow eN\gamma) = \left| \begin{array}{c} DVCS \\ + \\ + \\ \end{array} \right|^{2}$

- $\begin{array}{l} \textbf{Bethe}_{C}\textbf{He}_{T}\textbf{He}_{C}\textbf{He}_{T}\textbf{He}_{D}\textbf{experimentally}^{\dagger}\textbf{Me}_{d}\textbf{He}_{d$
- Cross section measurement
- Solution Polarization measurements: asymmetries and cross-section differences ⇒ $\sigma^+ \sigma^- \propto I = T_{\text{DVCS}}T_{\text{BH}}^* + T_{\text{DVCS}}^*T_{\text{BH}}$ $A = \frac{\sigma^+ \sigma^-}{\sigma^+ + \sigma^-} \propto \frac{I}{|T_{\text{DVCS}}|^2 + |T_{\text{BH}}|^2 + I}$

$$T_{\rm DVCS} \propto \mathcal{P} \int_{-1}^{1} dx \left[\frac{1}{x-\xi} \mp \frac{1}{x+\xi} \right] F(x,\xi,t) - i\pi [F(\xi,\xi,t) \mp F(-\xi,\xi,t)]$$

Accessing GPDs experimentally

Exploring QCD with light nuclei at EIC, Stony Brook University, January 21 2020

GPDs sensitivity of DVCS spin observables

Compton Form Factors: 8 GPD-related quantities

$$\Re \mathbf{e}\mathcal{F} = \mathcal{P} \int_{-1}^{1} dx \left[\frac{1}{x-\xi} \mp \frac{1}{x+\xi} \right] F(x,\xi,t)$$
$$\Im \mathbf{m}\mathcal{F} = \pi \left[F(\xi,\xi,t) \mp F(-\xi,\xi,t) \right]$$

Observable	Proton	Neutron
Beam Spin Asymmetry ALU		
$A_{\rm LU}(\phi) \propto \Im m[F_1 \mathcal{H} + \xi(F_1 + F_2)\widetilde{\mathcal{H}} - \frac{t}{4M^2}F_2\mathcal{E}]\sin\phi$		
Target Spin Asymmetry A _{UL}		
$A_{\rm UL}(\phi) \propto \Im[F_1 \widetilde{\mathcal{H}} + \xi(F_1 + F_2)(\mathcal{H} + \frac{x_B}{2}\mathcal{E}) - \xi(\frac{x_B}{2}F_1 + \frac{t}{4M^2}F_2)\widetilde{\mathcal{E}}]\sin\phi$		
Double Spin Asymmetry ALL		
$A_{\rm LL}(\phi) \propto \Re e[F_1 \widetilde{\mathcal{H}} + \xi(F_1 + F_2)(\mathcal{H} + \frac{x_B}{2}\mathcal{E}) - \xi(\frac{x_B}{2}F_1 + \frac{t}{4M^2}F_2)\widetilde{\mathcal{E}}](A + B\cos\phi)$		
Transverse Target Spin Asymmetry A _{UT}		
$A_{\rm UT}(\phi) \propto \Im m[k(F_2\mathcal{H} - F_1\mathcal{E}) +]\sin\phi$ 7		

GPDs sensitivity of DVCS spin observables

Compton Form Factors: 8 GPD-related quantities

$$\Re \mathbf{e}\mathcal{F} = \mathcal{P} \int_{-1}^{1} dx \left[\frac{1}{x-\xi} \mp \frac{1}{x+\xi} \right] F(x,\xi,t)$$
$$\Im \mathbf{m}\mathcal{F} = \pi \left[F(\xi,\xi,t) \mp F(-\xi,\xi,t) \right]$$

Observable	Proton	Neutron
Beam Spin Asymmetry ALU		
$A_{\rm LU}(\phi) \propto \Im[F_1\mathcal{H} + \xi(F_1 + F_2)\widetilde{\mathcal{H}} - \frac{t}{4M^2}F_2\mathcal{E}]\sin\phi$	$\Im_{\mathbf{H}_p}, \widetilde{\mathcal{H}_p}, \mathcal{E}_p\}$	
Target Spin Asymmetry A _{UL}		
$A_{\rm UL}(\phi) \propto \Im[F_1\widetilde{\mathcal{H}} + \xi(F_1 + F_2)(\mathcal{H} + \frac{x_B}{2}\mathcal{E}) - \xi(\frac{x_B}{2}F_1 + \frac{t}{4M^2}F_2)\widetilde{\mathcal{E}}]\sin\phi$	$\Im_{\mathbf{H}_{p}},\widetilde{\mathbf{\mathcal{H}_{p}}}\}$	
Double Spin Asymmetry ALL		
$A_{\rm LL}(\phi) \propto \Re[F_1 \widetilde{\mathcal{H}} + \xi(F_1 + F_2)(\mathcal{H} + \frac{x_B}{2}\mathcal{E}) - \xi(\frac{x_B}{2}F_1 + \frac{t}{4M^2}F_2)\widetilde{\mathcal{E}}](A + B\cos\phi)$	$\Re \{ oldsymbol{\mathcal{H}}_p, \widetilde{oldsymbol{\mathcal{H}}_p} \}$	
Transverse Target Spin Asymmetry AUT		
$A_{\rm UT}(\phi) \propto \Im[k(F_2\mathcal{H} - F_1\mathcal{E}) +]\sin\phi$ 7	$\Im_{\mathbf{H}_p, \mathbf{\mathcal{E}_p}}$	

GPDs sensitivity of DVCS spin observables

Compton Form Factors: 8 GPD-related quantities

$$\Re \mathbf{e}\mathcal{F} = \mathcal{P} \int_{-1}^{1} dx \left[\frac{1}{x-\xi} \mp \frac{1}{x+\xi} \right] F(x,\xi,t)$$
$$\Im \mathbf{m}\mathcal{F} = \pi \left[F(\xi,\xi,t) \mp F(-\xi,\xi,t) \right]$$

Observable	Proton	Neutron	
Beam Spin Asymmetry ALU			
$A_{\rm LU}(\phi) \propto \Im[F_1\mathcal{H} + \xi(F_1 + F_2)\widetilde{\mathcal{H}} - \frac{t}{4M^2}F_2\mathcal{E}]\sin\phi$	$\Im_{\mathbf{H}_p} \{ oldsymbol{\mathcal{H}}_p, oldsymbol{\widetilde{\mathcal{H}}}_p, oldsymbol{\mathcal{E}}_p \}$	$\Im_{n} \{\mathcal{H}_{n}, \widetilde{\mathcal{H}_{n}}, \mathcal{E}_{n}\}$	
Target Spin Asymmetry A _{UL}			
$A_{\rm UL}(\phi) \propto \Im [F_1 \widetilde{\mathcal{H}} + \xi (F_1 + F_2) (\mathcal{H} + \frac{x_B}{2} \mathcal{E}) - \xi (\frac{x_B}{2} F_1 + \frac{t}{4M^2} F_2) \widetilde{\mathcal{E}}] \sin \phi$	$\Im_{\mathbf{H}_{p}} \in \widetilde{\mathbf{\mathcal{H}_{p}}}$	$\Im_{\mathbf{H}_n} \{ oldsymbol{\mathcal{H}}_n, \widetilde{\mathcal{H}_n}, \mathcal{E}_n \}$	
Double Spin Asymmetry ALL			
$A_{\rm LL}(\phi) \propto \Re[F_1 \widetilde{\mathcal{H}} + \xi(F_1 + F_2)(\mathcal{H} + \frac{x_B}{2}\mathcal{E}) - \xi(\frac{x_B}{2}F_1 + \frac{t}{4M^2}F_2)\widetilde{\mathcal{E}}](A + B\cos\phi)$	$\Re \{ oldsymbol{\mathcal{H}}_p, \widetilde{oldsymbol{\mathcal{H}}_p} \}$	$\Re \{ oldsymbol{\mathcal{H}}_n, \widetilde{\mathcal{H}_n}, \mathcal{E}_n \}$	
Transverse Target Spin Asymmetry AUT			
$A_{\rm UT}(\phi) \propto \Im[k(\mathbf{F}_2 \mathcal{H} + \mathbf{F}_1 \mathcal{E}) +]\sin \phi$ 7	$\Im_{\mathbf{H}_p}, \boldsymbol{\mathcal{E}_p}\}$	$\Im_{\mathbf{H}_n}$	

DVCS on the neutron

• We can extract GPDs for proton or neutron but we want GPDs for quark flavors

 $(H, E)_u(\xi, \xi, t) = 9/15[4(H, E)_p(\xi, \xi, t) - (H, E)_n(\xi, \xi, t)]$ (H, E)_d(\xi, \xi, t) = 9/15[4(H, E)_n(\xi, \xi, t) - (H, E)_p(\xi, \xi, t)]

- H,E for both proton and neutron are needed
 - E_n BSA on neutron
 - E_p TTSA on proton

- H_n TSA on neutron
- H_p BSA on proton

nDVCS important for flavor separation

with H_q, E_q can extract the quark angular momentum (Ji's sum rule)

$$J_N = \frac{1}{2} = J^q + J^g = \frac{1}{2}\Sigma + L^q + \Delta g + L^g$$
$$J^q = \frac{1}{2} - J^g = \frac{1}{2} \int_{-1}^{+1} x dx [H^q(x,\xi,0) + E^q(x,\xi,0)]$$

information on quark orbital angular momentum

 Δg

Hall A: DVCS neutron E03-106 (2004)

M. Mazouz et al., PRL 99,242501 (2007)

 $(ec{e}, e', \gamma)X$ $H(\vec{e}, e', \gamma)X$ $LD_2 \& LH_2$ Impulse approximation: $D(\vec{e}, e', \gamma)X - H(\vec{e}, e', \gamma)X = d(\vec{e}, e', \gamma)d + n(\vec{e}, e', \gamma)n + p(\vec{e}, e', \gamma)p$ $-p(\vec{e},e',\gamma)p+...$ <Q2>=1.9 GeV2 3500 $< x_B > = 0.36$ —■ D₂ data cut 3000 — H₂ data -t=0.1-0.5 GeV² 2500 - p-DVCS simulation 2000 പ് 1500 **Cross sections diff** 1000 500 Helicity signal 2000 n-DVCS d-DVCS simulation $S_h = \int_0^\infty (N^+ - N^-) d^5 \Phi$ d-DVCS n-DVCS simulation 1000 പ് $-\int^{2\pi} (N^+ - N -) d^5 \Phi$ -1000 n-DVCS + d-DVCS -2000 0.5 2.5 1.5 2 $d^{5}\Phi = dQ^{2}dx_{B}dtd\phi d\phi$, Fairfield Exploring QCD with light nuclei at EIC, Stony Brook University, January 21 2020

Hall A: DVCS neutron E03-106 (2004)

M. Mazouz et al., PRL 99,242501 (2007)

 $\frac{d^5 \Sigma_{D-H}}{d^5 \Phi} = \frac{1}{2} \left(\frac{d^5 \sigma^+}{d^5 \Phi} - \frac{d^5 \sigma^-}{d^5 \Phi} \right) = \left(\Gamma_d^{\mathcal{I}} \mathcal{I} \mathrm{m} \left(\mathcal{C}_d^I \right)^{exp} + \Gamma_n^{\mathcal{I}} \mathcal{I} \mathrm{m} \left(\mathcal{C}_n^I \right)^{exp} \right) \sin(\phi_{\gamma\gamma})$

Fit of 2520 bins in M_x , t and $\phi_{\gamma\gamma}$ to extract CFFs

Sensitivity to Im{E}

Sensitivity to quark angular momentum J_u J_d

Exploring QCD with light nuclei at EIC, Stony Brook University, January 21 2020

Hall A: DVCS neutron E08-025 (2010)

Hall A: DVCS neutron E08-025 (2010)

Cross sections

DVCS² & Int

12GeV @ Jefferson Lab

2019 Fall Meeting of the APS Division of Nuclear Physics, October 14-17, 2019 Crystal City, VA

13

CLAS12 DVCS experiments

CLAS12 DVCS experiments

Electron scattering off unpolarized deuteron a.k.a. Run Group B

- Approved for 90 PAC days
- CLAS12+CND+FT+BAND+RICH
- Ran in Feb 8, 2019 to March 19 2019 (45 PAC days)
- Currently running Nov 2019-Jan 2020
- deuteron target: ρ = 0.163 g/cm³ (23.6 K, 1200 mbar), unpolarized
 LD₂ L = 5 cm, d = 2 cm
- Polarized beam beam pol 85-87%
- Beam energy 10.6 and 10.2 GeV
- L=10³⁵ cm⁻²s⁻¹/nucleon

Spring 2019 run 237 production runs (35 nA, 50 nA)

• low-current runs, emptytarget runs

9.7 B events at 10.6 GeV,
11.7 B events at 10.2 GeV

Winter 2019-2020 run

35-45nA current

10.4 GeV energy

On-going

nDVCS with RGB data first look

Work done by Kitty Price

Analysis strategy

- Fully exclusive: detect n in the final state
- Leverage exclusivity by looking at $eD \rightarrow en\gamma$ and $en \rightarrow en\gamma$ kinematic variables

nDVCS with RGB data first look

Extraction of pDVCS BSA using RGB data to check the analysis

Exploring QCD with light nuclei at EIC, Stony Brook University, January 21 2020

Very preliminary nDVCS BSA

- No π^0 background subtraction
- Consistent with sin expectation
- 10% of the Spring 2019 data

Projected results for \mathbf{RGB}^{(H,E)}(\xi,\xi,t) = \frac{9}{15}[4(H,E)_n(\xi,\xi,t)]

Experiment E12-06-119 TSA DSA nDVCS a.k.a Run Group C

- TSA and DSA
- ~65 PAC days (together with DIS)
- CLAS12+CND+pol target+(FT?)

• ND3

- beam pol 85%
- target pol 40%
- e d -> e(p) n g
- L=10³⁵ cm⁻²s⁻¹/nucleon
- 1<Q²<10 GeV² 0.1<x_B<0.7
- -t_{min}<-t<1.2 GeV²

The APOLLO target (Ammonia POlarized LOngitudinally)

Planning to run in 2021-2022 First part of the run no FT

Experiment E12-15-004 polarized nDVCS

Experiment E12-15-004 polarized nDVCS • Combining results of neutron experiments $E_{Im}(n)$, $H_{Im}(n)$ best constrained Fit of BSA, TSA, DSA to extract CFF for the $\tilde{H}_{Im}(n)$, $H_{Re}(n)$ constrained low Q²-x_B neutron Assumption Ẽ purely real: Ẽ_{Im}(n)=0 $\tilde{H}_{Re}(n)$ very limited E_{Re}(n) not constrained 7 CFF to be fitted (GeV²) 6 01 limit +/- 5VGG prediction E_{lm}(n) ñ 10 Q^2 (GeV²) H_{Im}(n) ء ۳ 8 1 -t (GeV²) 6 5 3 4 2 3 0.1 0.2 0.3 0.4 0.5 0.6 0.7 XB 2 0.2 0.3 0.4 0.5 0.6 0.7 0.1

X_R

Flavor separation with CLAS12

 Flavor separation by combining results pDVCS and nDVCS experiments

 $(H, E)_u(\xi, \xi, t) = 9/15[4(H, E)_p(\xi, \xi, t) - (H, E)_n(\xi, \xi, t)]$ (H, E)_d(\xi, \xi, t) = 9/15[4(H, E)_n(\xi, \xi, t) - (H, E)_p(\xi, \xi, t)]

Experiment E12-06-119 nDVCS BSA a.k.a Bonus12

Extension of E12-06-113 : Bonus12 + polarized beam Bonus Radial TPC \rightarrow Tagged proton spectator Scheduled to run Spring 2020 (soon) Two ways of measuring the asymmetry :

- Very limited statistics
- Can be used for cross checks and systematics studies

nDVCS BSA BoNUS12

Possible sensitivity to the initial state and break of the deuterium

More opportunities with deuteron target

Deeply Virtual Compton on nuclei

Deeply Virtual Compton on nuclei

Measure of coherent DVCS $\vec{e}A
ightarrow e'A'\gamma$

- Different spins: additional structure functions
- Three dimensional picture of nuclei
- Study of the modification of quark and gluon distributions in nuclei

Helium measurement - clas6 ⁴He spin 0, only one GPD at twist-2 in DVCS BSA

2019 Fall Meeting of the APS Division of Nuclear Physics, October 14-17, 2019 Crystal City, VA

Deeply Virtual Compton on Deuteron

Related to the form factors $\int_{-1}^{1} H_i(x,\xi,t) dx = G_i(t) \quad i = 1, 2, 3$ $\int_{-1}^{1} \tilde{H}_i(x,\xi,t) dx = \tilde{G}_i(t) \quad i = 1, 2$ $G_1(t) = G_C(t) - \frac{2}{3}\eta G_Q(t)$ $G_2(t) = G_M(t)$ $(1+\eta)G_3(t) = G_M(t) - G_C(t) + (1 + \frac{2}{3}\eta)G_Q(t)$ $G_C(0) = 1, \quad G_M(0) = \mu_d = 1.74, \quad G_Q(0) = Q_d = 25.83$

Sum rule $J_{q,g} = \frac{1}{2} \int dx x H_2^{q,g}(x,0,0)$

Deuteron BSA

$$\begin{aligned} A_{LU}(\phi) = & \frac{x_A(2-y)\sqrt{\frac{-\Delta^2(1-y)}{Q^2}}}{2-2y+y^2} \\ \times \Im m \frac{2G_1\mathcal{H}_1 + (G_1 - 2\tau G_3)(\mathcal{H}_1 - 2\tau \mathcal{H}_3) + \frac{2}{3}\tau G_3\mathcal{H}_5}{2G_1^2 + (G_1 - 2\tau G_3)^2} \\ \times \sin(\phi) \end{aligned}$$

Here #s are the Compton form factor and they are related to GPDs by

$$\Re e \mathcal{F} = \mathcal{P} \int_{-1}^{1} dx \left[\frac{1}{x - \xi} \mp \frac{1}{x + \xi} \right] F(x, \xi, t)$$
$$\Im m \mathcal{F} = \pi \left[F(\xi, \xi, t) \mp F(-\xi, \xi, t) \right]$$

Coherent deuteron DVCS selection

Select events with:

- at least 1 electron, 1 deuteron and 1 gamma
- Electron: FD, Deuteron CD, gamma FT
- Deuterons: beta>0.16, minimum energy CTOF dE/dx>5

DVCS events:

- Q²>2 GeV²
- W>1 GeV

- Eg>2GeV
- p_D<2 GeV

Coherent deuteron DVCS selection

Use the full exclusive channel to apply tight kinematic cuts to select coherent DVCS

Conclusions

- GPD are a powerful and unique tool explore the structure of the nucleon
- GPDs are fully-correlated quark distributions in both coordinate and momentum space -> 3D imaging
- Complex extraction from data
 - 4 GPD for each quark flavor
 - GPDs depend on 3 variables but only two are experimentally accessible. Need models to map the x dependence
 - Cross sections depend on integrals of GPDs
- Neutron data essential for flavor separation
- Successful analyses of 6 GeV data in Hall A
- Preliminary results from RGB data
- Several upcoming experiments on neutron targets

nDVCS at EIC?

Thank you for the invitation.

Х

DVCS summary

Observable	Sensitivity to CFFs	Completed Experiments	12GeV experiments
$\Delta \sigma_{beam}(p)$	Im 74p	Hall A, CLAS	Hall A, CLAS12, Hall C
A _{LU} (p)	Im ઋ p	HERMES CLAS	CLAS12
A _{UL} (p)	Im ઋ̃ _p ,Im ઋ _p	HERMES CLAS	CLAS12
A _{LL} (p)	Re ℋ̃ _p ,Re ℋ _p	HERMES, CLAS	CLAS12
А _{UT} (р)	Im \mathscr{H}_{p} ,Im \mathcal{E}_{p}	HERMES	CLAS12
$\Delta\sigma_{beam}(n)$	Im \mathcal{E}_n	Hall A	
A _{LU} (n)	Im \mathcal{E}_n		CLAS12
A _{UL} (n)	$\operatorname{Im} \mathcal{H}_n$		CLAS12
A _{LL} (n)	$A_{LL}(n)$ Re \mathcal{H}_n		CLAS12
TCS	Re \mathcal{H}_n Im \mathcal{H}_n	CLAS (no published)	CLAS12

CLAS12 schedule

Run Group	Days	2015	2016	2017	2018	2019	2020	2021	Remai n
All Run Groups	936		CND	FT RICH MM			Trans. PT	525	411
HPS	180*	2-3	7?						
PRad	15*		10 ?						
CLAS12 KPP				15					
RG-A (proton)	139*	pDVC	S BSA	20 50					69*
RG-F (BoNuS)	42*	nDVC	S BSA		40				2
RG-B (deut.)	90*				45				45*
RG-C (NH ₃)	120	pDVC	S ISA DS		15	45			60
RG-C-b (ND ₃)	65	nDVC	S TSA DS	SA		35			30
RG-E (Hadr.)	60					20	15		25
RG-G (TT)	110*	pDVC	S tTSA				55		55
RG-D (CT)	60						30		30
RG-K (LiD)	55							55	

CLAS: DVCS neutron

 $e + \vec{d} \rightarrow e' + \gamma + n + (p_s)$

Work by D. Sokhan

eg1-dvcs run CLAS+IC

- NH3 95 days
- ND3 33 days

Analysis underway

Non-zero BSA

Use NH₃ to subtract nuclear background

