Polarized ³He for Spin Structure Measurements

J. Maxwell

Exploring QCD with Light Nuclei at EIC January 21st, 2020

Outline

 ³He Polarization Optical Pumping Techniques
 Polarized ³He in Spin Physics Previous Measurements Polarized ³He at JLab 12 GeV
 New Prospects Polarized ³He for the EIC A High-Field Polarized ³He Target
 Slight tangent: Nuclear Gluonometry

Outline

³He Polarization **Optical Pumping Techniques**

Why Polarized Helium 3?

- · Polarized scattering experiments crucial for study of neutron spin structure
 - · How do we make polarized neutron targets and beam sources?

- S-state ³He: nuclear spin carried by the neutron nearly 90% of the time
- Polarized spin asymmetries: ${}^{3}\overrightarrow{\text{He}}$ good surrogate for \vec{n}
- ³He's magnetic moment close to n, easier spin manipulation in accelerator

Spin Exchange Optical Pumping

- + Pump Rb in \sim 30 G holding field
 - + 795 nm laser light: $5S_{1/2} \rightarrow 5P_{1/2}$
- Spin exchange polarizes K, then ³He
- Pressures up to 13 atm
- Polarize in oven, transfer target cell
- $P_{\mathsf{Rb}}\sim 95$ %, $P_{^3\mathsf{He}}\sim 80\%$
 - In-beam reduced to $P_{^3\mathrm{He}}\sim 60\%$
 - Longitudinal or transverse
- Wall depolarization \Rightarrow glass cells
- Improvements: Rb/K hybrid alkali cell, narrow band lasers

Spin Exchange Optical Pumping

- + Pump Rb in \sim 30 G holding field
 - + 795 nm laser light: $5S_{1/2} \rightarrow 5P_{1/2}$
- Spin exchange polarizes K, then ³He
- Pressures up to 13 atm
- Polarize in oven, transfer target cell
- + $P_{\rm Rb}\sim 95$ %, $P_{^3{\rm He}}\sim 80\%$
 - + In-beam reduced to $P_{\rm ^3He}\sim 60\%$
 - Longitudinal or transverse
- Wall depolarization \Rightarrow glass cells
- Improvements: Rb/K hybrid alkali cell, narrow band lasers

Gentile et al. RMP, 2017.

Spin Exchange Optical Pumping

- Pump Rb in \sim 30 G holding field
 - + 795 nm laser light: $5S_{1/2} \rightarrow 5P_{1/2}$
- Spin exchange polarizes K, then ³He
- Pressures up to 13 atm
- Polarize in oven, transfer target cell
- + $P_{\rm Rb}\sim 95$ %, $P_{^3{\rm He}}\sim 80\%$
 - + In-beam reduced to $P_{\rm ^3He}\sim 60\%$
 - Longitudinal or transverse
- Wall depolarization \Rightarrow glass cells
- Improvements: Rb/K hybrid alkali cell, narrow band lasers

SEOP Improvements

- Legacy cell
 - 10 atm, 40 cm long, 0.1 mm windows
 - 15 μ A beam for 10^{36} cm⁻²s⁻¹
- Stage I cell (currently taking beam)
 - 10 atm, 40 cm long, 0.1 mm windows
 - \cdot 30 μ A beam for $2.2 imes 10^{36}~{
 m cm}^{-2}{
 m s}^{-1}$
 - Convection reduces polarization gradient
- · Stage II cell (under development)
 - 10 atm, 60 cm long, metal foil windows
 - + 60 μ A beam for $6.6 imes 10^{36}
 m \, cm^{-2} s^{-1}$ dfc
- Work by JLab 3He group, UVa, W&M, Kentucky, Temple

JLab 3He Group

SEOP Improvements

- Legacy cell
 - 10 atm, 40 cm long, 0.1 mm windows
 - 15 μ A beam for 10^{36} cm⁻²s⁻¹
- Stage I cell (currently taking beam)
 - 10 atm, 40 cm long, 0.1 mm windows
 - + 30 μ A beam for 2.2×10^{36} cm $^{-2}$ s $^{-1}$
 - Convection reduces polarization gradient
- · Stage II cell (under development)
 - 10 atm, 60 cm long, metal foil windows
 - 60 μ A beam for $6.6 imes10^{36}~{
 m cm}^{-2}{
 m s}^{-1}$ dfc
- Work by JLab 3He group, UVa, W&M, Kentucky, Temple

JLab 3He Group

SEOP Improvements

- Legacy cell
 - 10 atm, 40 cm long, 0.1 mm windows
 - 15 μ A beam for 10^{36} cm⁻²s⁻¹
- Stage I cell (currently taking beam)
 - 10 atm, 40 cm long, 0.1 mm windows
 - + 30 μ A beam for 2.2×10^{36} cm $^{-2}$ s $^{-1}$
 - Convection reduces polarization gradient
- Stage II cell (under development)
 - 10 atm, 60 cm long, metal foil windows
 - + 60 μ A beam for $6.6 \times 10^{36} \text{ cm}^{-2} \text{s}^{-1}$ dfc
- Work by JLab 3He group, UVa, W&M, Kentucky, Temple

JLab 3He Group

³He Polarization

Metastability Exchange Optical Pumping

- 1963, Colgrove et al (TI)
- Pure 3 He, ${\sim}30$ G field
- Discharge promotes states to 2^3S_1
- Laser drives polarization
- Collisions between 2³S₁ and ground state polarize nuclei
- Requires \sim 2 mbar, >100 K
- Effectively 10⁵ faster pump rate (but 10⁴ lower pressure)

³He Polarization

Metastability Exchange Optical Pumping

- 1963, Colgrove et al (TI)
- + Pure $^3\text{He},$ ${\sim}30\,\text{G}$ field
- Discharge promotes states to $2^3 {\rm S}_1$
- Laser drives polarization
- Collisions between 2³S₁ and ground state polarize nuclei
- Requires \sim 2 mbar, >100 K
- Effectively 10⁵ faster pump rate (but 10⁴ lower pressure)

MEOP Double-Cell Cryo Target: Bates 88-02

- Quasi-elastic asymmetries in 1988, 1993
- MEOP pumping cell at 2 mbar, 300 K
- Cu target cell at 2 mbar, 17 k
- Cu foil beam windows (4.6 μ m)
- Cold surfaces coated with N₂ to reduce depolarization from wall interactions
- + 7.2×10^{32} ³He/cm²/s Luminosity w/ 10 μ A
- P measurement performed in pumping cell
- *P* in target inferred from rate equations: *P* relaxation and diffusion

MEOP Double-Cell Cryo Target: Bates 88-02

- Quasi-elastic asymmetries in 1988, 1993
- MEOP pumping cell at 2 mbar, 300 K
- Cu target cell at 2 mbar, 17 k
- Cu foil beam windows (4.6 μ m)
- Cold surfaces coated with N₂ to reduce depolarization from wall interactions
- + 7.2×10^{32} ³He/cm²/s Luminosity w/ 10 μ A
- P measurement performed in pumping cell
- *P* in target inferred from rate equations: *P* relaxation and diffusion

Outline

 ³He Polarization Optical Pumping Techniques
 Polarized ³He in Spin Physics Previous Measurements Polarized ³He at JLab 12 GeV
 New Prospects Polarized ³He for the EIC A High-Field Polarized ³He Target
 Slight tangent: Nuclear Gluonometry

JLab 6 GeV Polarized ³He: 13 Experiments with SEOP in Hall A

Neutron Spin Structure

- Valence structure: g_1^n , A_1^n
- Higher-twist: g_2^n , d_2^n
- Sum rules (GDH)
- Quark-Hadron duality

- Transversity, TMDs
- G_M^n , G_E^n
- 2- γ exchange, Inclusive A_y
- Quasi-elastic A_x , A_z

JLab 6 GeV Polarized ³He: 13 Experiments with SEOP in Hall A

Neutron Spin Structure

- Valence structure: g_1^n , A_1^n
- Higher-twist: g_2^n , d_2^n
- Sum rules (GDH)
- Quark-Hadron duality

- Transversity, TMDs
- G_M^n , G_E^n
- 2- γ exchange, Inclusive A_y
- Quasi-elastic A_x , A_z

JLab 6 GeV Polarized ³He: 13 Experiments with SEOP in Hall A

Neutron Spin Structure

- Valence structure: g_1^n , A_1^n
- Higher-twist: g_2^n , d_2^n
- Sum rules (GDH)
- Quark-Hadron duality

- Transversity, TMDs
- G_M^n , G_E^n
- 2- γ exchange, Inclusive A_y
- Quasi-elastic A_x , A_z

JLab 6 GeV Polarized ³He: 13 Experiments with SEOP in Hall A

Neutron Spin Structure

- Valence structure: g_1^n , A_1^n
- Higher-twist: g_2^n , d_2^n
- Sum rules (GDH)
- Quark-Hadron duality

- Transversity, TMDs
- G^n_M , G^n_E
- 2- γ exchange, Inclusive A_y
- Quasi-elastic A_x , A_z

JLab 6 GeV Polarized ³He: 13 Experiments with SEOP in Hall A

Neutron Spin Structure

- Valence structure: g_1^n , A_1^n
- Higher-twist: g_2^n , d_2^n
- Sum rules (GDH)
- Quark-Hadron duality

- Transversity, TMDs
- G_M^n , G_E^n
- 2- γ exchange, Inclusive A_y
- Quasi-elastic A_x , A_z

JLab 6 GeV Polarized ³He: 13 Experiments with SEOP in Hall A

Neutron Spin Structure

- Valence structure: g_1^n , A_1^n
- Higher-twist: g_2^n , d_2^n
- Sum rules (GDH)
- Quark-Hadron duality

- Transversity, TMDs
- G_M^n , G_E^n
- 2- γ exchange, Inclusive A_y
- Quasi-elastic A_x , A_z

JLab 6 GeV Polarized ³He: 13 Experiments with SEOP in Hall A

Neutron Spin Structure

- Valence structure: g_1^n , A_1^n
- Higher-twist: g_2^n , d_2^n
- Sum rules (GDH)
- Quark-Hadron duality

- Transversity, TMDs
- $G_{M'}^n G_E^n$
- + 2- γ exchange, Inclusive A_y
- Quasi-elastic A_x , A_z

Spin Structure in Hall C

- Experiments running now!
- E12-06-110: A_1^n
- E12-06-121: g_2^n , d_2^n
- SuperBigBite
 - E12-09-018: Transverse SIDIS
 - E12-09-016: G_E^n , G_M^n

SoLID SIDIS TMDs

- E12-10-006: Transverse 3He
- E12-11-007: Longitudinal 3He
- Di-hadron, Inclusive A_y

Hall C Logbook

Spin Structure in Hall C

- Experiments running now!
- E12-06-110: A_1^n
- E12-06-121: g_2^n , d_2^n
- SuperBigBite
 - E12-09-018: Transverse SIDIS
 - E12-09-016: G_E^n , G_M^n
- SoLID SIDIS TMDs
 - E12-10-006: Transverse 3He
 - E12-11-007: Longitudinal 3He
 - Di-hadron, Inclusive A_y

Spin Structure in Hall C

- Experiments running now!
- E12-06-110: A_1^n
- E12-06-121: g_2^n , d_2^n
- SuperBigBite
 - E12-09-018: Transverse SIDIS
 - E12-09-016: *G*^{*n*}_{*E*}, *G*^{*n*}_{*M*}

- E12-10-006: Transverse 3He
- E12-11-007: Longitudinal 3He
- Di-hadron, Inclusive A_y

Spin Structure in Hall C

- Experiments running now!
- E12-06-110: A_1^n
- E12-06-121: g_2^n , d_2^n
- SuperBigBite
 - E12-09-018: Transverse SIDIS
 - E12-09-016: G_E^n , G_M^n

- E12-10-006: Transverse 3He
- E12-11-007: Longitudinal 3He
- Di-hadron, Inclusive A_y

Spin Structure in Hall C

- Experiments running now!
- E12-06-110: A_1^n
- E12-06-121: g_2^n , d_2^n
- SuperBigBite
 - E12-09-018: Transverse SIDIS
 - E12-09-016: G_{E}^{n} , G_{M}^{n}

- E12-10-006: Transverse 3He
- E12-11-007: Longitudinal 3He
- Di-hadron, Inclusive A_y

Spin Structure in Hall C

- Experiments running now!
- E12-06-110: A_1^n
- E12-06-121: g_2^n , d_2^n
- SuperBigBite
 - E12-09-018: Transverse SIDIS
 - E12-09-016: G_{E}^{n} , G_{M}^{n}

- E12-10-006: Transverse 3He
- E12-11-007: Longitudinal 3He
- Di-hadron, Inclusive A_y

Spin Structure in Hall C

- Experiments running now!
- E12-06-110: A_1^n
- E12-06-121: g_2^n , d_2^n
- SuperBigBite
 - E12-09-018: Transverse SIDIS
 - E12-09-016: G_E^n , G_M^n

- E12-10-006: Transverse 3He
- E12-11-007: Longitudinal 3He
- Di-hadron, Inclusive A_y

Spin Structure in Hall C

- Experiments running now!
- E12-06-110: A_1^n
- E12-06-121: g_2^n , d_2^n
- SuperBigBite
 - E12-09-018: Transverse SIDIS
 - E12-09-016: G_E^n , G_M^n

- E12-10-006: Transverse 3He
- E12-11-007: Longitudinal 3He
- Di-hadron, Inclusive A_y

Spin Structure in Hall C

- Experiments running now!
- E12-06-110: A_1^n
- E12-06-121: g_2^n , d_2^n
- SuperBigBite
 - E12-09-018: Transverse SIDIS
 - E12-09-016: G_E^n , G_M^n

- E12-10-006: Transverse 3He
- E12-11-007: Longitudinal 3He
- Di-hadron, Inclusive A_y

Outline

 ³He Polarization Optical Pumping Techniques
 Polarized ³He in Spin Physics Previous Measurements Polarized ³He at JLab 12 GeV
 New Prospects Polarized ³He for the EIC A High-Field Polarized ³He Target
 Slight tangent: Nuclear Gluonometry

Metastability Exchange and Spin Exchange Optical Pumping

MEOP

- Pure ³He with RF discharge
- High pumping rate
- · Less sensitive to wall interactions
- Temperature above 100 K
- 4 W laser typical
- Limited pressure (~1 mbar)

SEOP

- Mixture of Alkali metals with ³He
- Low pumping rate
- · Walls carefully selected
- Needs oven (200°C)
- 100 W laser typical
- Large pressure range (1 to 13 bar)
- Pressure attainable without pumps has made SEOP the most attractive tool for high luminosity scattering applications

High Magnetic Field MEOP

- Weak hyperfine coupling \Rightarrow ineffective MEOP?
- Until Courtade et al (2000)
- Kastler-Brossel Lab at ENS in Paris found by increasing *B*₀, MEOP effective at higher pressures!
- ME rates are lower, BUT:
- Zeeman splitting separates states for laser pumping, also giving convenient transitions to probe for polarization measurement

From Gentile, Nacher, Saam, Walker (2017)

High Magnetic Field MEOP

- Weak hyperfine coupling \Rightarrow ineffective MEOP?
- Until Courtade et al (2000)
- Kastler-Brossel Lab at ENS in Paris found by increasing B₀, MEOP effective at higher pressures!
- ME rates are lower, BUT:
- Zeeman splitting separates states for laser pumping, also giving convenient transitions to probe for polarization measurement

He3 Absorption Spectrum at 0.01T

High Magnetic Field MEOP

- Weak hyperfine coupling \Rightarrow ineffective MEOP?
- Until Courtade et al (2000)
- Kastler-Brossel Lab at ENS in Paris found by increasing B₀, MEOP effective at higher pressures!
- ME rates are lower, BUT:
- Zeeman splitting separates states for laser pumping, also giving convenient transitions to probe for polarization measurement

He3 Absorption Spectrum at 1T
Polarized 3 He for the EIC

RHIC's Electron Beam Ion Source

- 5 T Solenoid B Field; 1.5 m Ion Trap
- 20 keV electrons up to 10 A, 575 A/cm² Current Density
- Any species, switch between species in 1 sec
- Very busy with RHIC runs (Au³²⁺), NASA Rad Lab
- Produce ³He⁺⁺ at nearly 100%

RHIC's Electron Beam Ion Source

- 5 T Solenoid B Field; 1.5 m lon Trap
- 20 keV electrons up to 10 A, 575 A/cm² Current Density
- Any species, switch between species in 1 sec
- Very busy with RHIC runs (Au³²⁺), NASA Rad Lab
- Produce ³He⁺⁺ at nearly 100%

Polarized ³He for the EIC

RHIC's Electron Beam Ion Source

- 5 T Solenoid B Field; 1.5 m lon Trap
- 20 keV electrons up to 10 A, 575 A/cm² Current Density
- Any species, switch between species in 1 sec
- Very busy with RHIC runs (Au³²⁺), NASA Rad Lab
- Produce ³He⁺⁺ at nearly 100%

Figure 4. (A) A schematic of the EBIS course. (B) The electric potential along the axis of the source.

Polarized ³He Ion Source

- MEOP inside magnetic shield (30 G), polarize to \sim 70% at 1 torr with 10 W laser
- Transfer $\sim 10^{14}$ ³He/s through stray field into EBIS at 5 T & 10^{-7} torr
- Deliver 1.5×10^{11} ³He⁺⁺ ions per 20 μ sec pulse

Polarized 3 He for the EIC

High Field Polarization Results

- ENS results at 4.7 T showed drop-off at 1 mbar (Nikiel *et al*, E.P.J.D. 67, 2013)
- Noted trouble with their 1 mbar cell
- We pursued 1 mbar polarization above 2 T, focusing on discharge quality
- Plot vs "relaxation time," largely dependent on discharge insensity
- Saw great success in steady state polarization >80%
- Maxwell, et al. NIM A 2019.

High Field Polarization Results

- ENS results at 4.7 T showed drop-off at 1 mbar (Nikiel *et al*, E.P.J.D. 67, 2013)
- Noted trouble with their 1 mbar cell
- We pursued 1 mbar polarization above 2 T, focusing on discharge quality
- Plot vs "relaxation time," largely dependent on discharge insensity
- Saw great success in steady state polarization >80%
- Maxwell, et al. NIM A 2019.

Polarized ³He for the EIC

Polarized ³He Source via High Field MEOP

Polarized ³He for the EIC

Polarized ³He Source via High Field MEOP

New Prospects

Polarized ³He Ion Source Outlook

- Demonstrated >80% polarization above 4 T, allowing polarization within EBIS
- This prompted a design change, which accelerated plan to extend EBIS
- Other benefits of revamped system. Extended trap allow 40% more Au intensity: easy sell.
- Extended EBIS to be installed summer of 2020, first tests of ³He injection
- Polarization measurement of extracted beam at 6 MeV in 2021
- See slides from 2019 PSTP Workshop, Knoxville by Musgrave, Atoian
- ³He Source Collaboration: G. Atoian , E. Beebe, S. Ikeda, S. Kondrashev , J. Maxwell, R. Milner, M. Musgrave, M. Okamura, A. Poblaguev , D. Raparia, J. Ritter, S. Trabocchi , A. Zelenski

New Prospects

Polarized ³He Ion Source Outlook

- Demonstrated >80% polarization above 4 T, allowing polarization within EBIS
- This prompted a design change, which accelerated plan to extend EBIS
- Other benefits of revamped system. Extended trap allow 40% more Au intensity: easy sell.
- Extended EBIS to be installed summer of 2020, first tests of ³He injection
- Polarization measurement of extracted beam at 6 MeV in 2021
- See slides from 2019 PSTP Workshop, Knoxville by Musgrave, Atoian
- ³He Source Collaboration: G. Atoian , E. Beebe, S. Ikeda, S. Kondrashev , J. Maxwell, R. Milner, M. Musgrave, M. Okamura, A. Poblaguev , D. Raparia, J. Ritter, S. Trabocchi , A. Zelenski

Opportunities with Polarized ³He in CLAS12

- CLAS12 a crucial tool for nuclear physics, designed to observe complete response for nuclei inelastic, resonance, quasi-elastic and deep-inelastic
 - Large acceptance
 - Excellent particle ID $(e/p/\pi/K/\gamma,...)$
 - Neutron detection and tagged particle detection
- Even considering existing plans for the 12 GeV era, a polarized ³He target in CLAS12 would offer unexplored observables, complementary measurements with different systematics
 - Multi-hadron SIDIS
 - $\cdot P_T$, k_T dependence for TMDs
 - Overlap of JLab 12 GeV and EIC crucial in the valence region
- There has never been a polarized ³He target in Hall B

Opportunities with Polarized ³He in CLAS12

- CLAS12 a crucial tool for nuclear physics, designed to observe complete response for nuclei inelastic, resonance, quasi-elastic and deep-inelastic
 - Large acceptance
 - Excellent particle ID $(e/p/\pi/K/\gamma,...)$
 - Neutron detection and tagged particle detection
- Even considering existing plans for the 12 GeV era, a polarized ³He target in CLAS12 would offer unexplored observables, complementary measurements with different systematics
 - Multi-hadron SIDIS
 - + P_T , k_T dependence for TMDs
 - $\cdot\,$ Overlap of JLab 12 GeV and EIC crucial in the valence region
- There has never been a polarized ³He target in Hall B

Opportunities with Polarized ³He in CLAS12

- CLAS12 a crucial tool for nuclear physics, designed to observe complete response for nuclei inelastic, resonance, quasi-elastic and deep-inelastic
 - Large acceptance
 - Excellent particle ID $(e/p/\pi/K/\gamma,...)$
 - Neutron detection and tagged particle detection
- Even considering existing plans for the 12 GeV era, a polarized ³He target in CLAS12 would offer unexplored observables, complementary measurements with different systematics
 - Multi-hadron SIDIS
 - P_T , k_T dependence for TMDs
 - Overlap of JLab 12 GeV and EIC crucial in the valence region
- There has never been a polarized ³He target in Hall B

CLAS12 Target Constraints

- Getting a conventional polarized ³He target in CLAS12 is tricky:
 - Remove solenoid, OR
 - Put target upstream of solenoid, OR
 - Transfer polarized gas into solenoid
- To operate in the standard configuration:
 - Fit inside solenoid (10 cm diameter space to work with)
 - Operate at 5 T

A High-Field Polarized $^{3}\mathrm{He}$ Target

The Idea

Double-Cell Cryo Target

- Polarize at 300 K
- Transfer to 5 K target cell
- Density increase $60 \times$

High Field MEOP

- High Polarization (60%)
- High magnetic fields (5 T)
- Pressure increase $100 \times$

- MEOP at 1 mbar offers 10,000 \times less density than SEOP at 10 bar
- This scheme increases MEOP density by 6,000 \times
- Reaches CLAS12 max luminosity with $4.5\times10^{34}~^3{\rm He/cm^2/s}$ at 2.5 μA

Proposed Target

- Cell volumes: 100 cm³, Cell pressure: 100 mbar, Polarization: 60%
- Beam Current: 2.5 μ A, Luminosity: 4.5×10^{34} ³He/cm²/s at 2.5 μ A
- Must fit in tight space constraint of CLAS12 (~10 cm)

A High-Field Polarized 3 He Target

- Cryogenics: Pulse Tube for 2 W at 4.2 K
- Heat load looks to be less than 500 mW
- Al cells, 200 μ m windows
- Coating of H₂ prevents wall depolarization below 6 K
- Field depolarization no problem
- Beam depolarization should be studied: balance with flow between cells with convection
- Heat load tests coming soon, prototype construction as soon as I find money

A High-Field Polarized $^{3}\mathrm{He}$ Target

- Cryogenics: Pulse Tube for 2 W at 4.2 K
- Heat load looks to be less than 500 mW
- Al cells, 200 μ m windows
- Coating of H_2 prevents wall depolarization below 6 K
- Field depolarization no problem
- Beam depolarization should be studied: balance with flow between cells with convection
- Heat load tests coming soon, prototype construction as soon as I find money

A High-Field Polarized 3 He Target

- Cryogenics: Pulse Tube for 2 W at 4.2 K
- Heat load looks to be less than 500 mW
- Al cells, 200 μ m windows
- Coating of H_2 prevents wall depolarization below 6 K
- · Field depolarization no problem
- Beam depolarization should be studied: balance with flow between cells with convection
- Heat load tests coming soon, prototype construction as soon as I find money

- Cryogenics: Pulse Tube for 2 W at 4.2 K
- Heat load looks to be less than 500 mW
- Al cells, 200 μ m windows
- Coating of H_2 prevents wall depolarization below 6 K
- Field depolarization no problem
- Beam depolarization should be studied: balance with flow between cells with convection
- Heat load tests coming soon, prototype construction as soon as I find money

A High-Field Polarized 3 He Target

- Cryogenics: Pulse Tube for 2 W at 4.2 K
- Heat load looks to be less than 500 mW
- Al cells, 200 μ m windows
- Coating of H_2 prevents wall depolarization below 6 K
- Field depolarization no problem
- Beam depolarization should be studied: balance with flow between cells with convection
- Heat load tests coming soon, prototype construction as soon as I find money

Transverse Polarized ³He in CLAS12?

- Transverse target offers tantalizing physics opportunities
- Very tricky in a longitudinal 5T solenoid
- HD-Ice has a plan involving bulk superconductor to cancel 5 T and create a transverse holding field
- Scheme could involve bulk superconductor to block field and create 30 G holding field
- Rotate spin adiabatically in transit to target cell
- Warrants exploration with tempered expectations

- Conceptual design report on arXiv:1911.06650
- Idea shown at CLAS collaboration meeting in November
- First meeting of study group on Dec 17th, 13 attended
- Volunteers to begin simulations on SIDIS, DVCS, Inclusive DIS
- Workshop for physics case at CLAS meeting in March

Conceptual Design of a Polarized ³He Target for the CLAS12 Spectrometer

James Maxwell¹ and Richard Milner²

¹Jefferson Lab, Newport News, VA ²Laboratory for Nuclear Science, MIT, Cambridge, MA

November 13, 2019

Abstract

We present a conceptual design for a polarized ³He target for Jefferson Lab's CLAS12 spectrometer in its standard configuration. This two-cell target will take advantage of advancements in optical pumping techniques at high magnetic field to create 60% longitudinally polarized ³He gas in a pumping cell inside the CLAS12 5T solenoid. By transferring this gas to a 20 cm long, 5K target cell, a target thickness of 3×10^{21} ³He/cm² will be produced, reaching the detector's specified maximum luminosity with a beam current of 2.5 μA .

Physics from Polarized ³He in Hall B

- Inclusive DIS: $g_1^n(x, Q^2)$, Bjorken sum rule
- Tagged Inclusive DIS: spin-dependent EMC effect
- + SIDIS: flavor decomposition, Δu , Δd , Δs
- TMDs, exploration in P_T , k_T
- DVCS: Neutron GPDs
- Quasielastic nucleon knockout: ground state spin-isospin structure, high-momentum correlated pairs
- $(e, e'\pi^{\pm})$: Search for pre-existing Δ s
- Suggestions and collaborators are welcome!

Outline

 ³He Polarization Optical Pumping Techniques
Polarized ³He in Spin Physics Previous Measurements Polarized ³He at JLab 12 GeV
New Prospects Polarized ³He for the EIC A High-Field Polarized ³He Target
Slight tangent: Nuclear Gluonometry

Gluon Structure of Nuclei

• Understanding glue is a key challenge of NP and central goal of EIC

Studying gluons is tricky

- Gluon does not couple to photon
- Probed indirectly by electron scattering from nuclei

- A nuclear glue effect, free from contributions of any nucleon, could offer invaluable view of nuclear structure
- "Nuclear Gluonometry" (Jaffe, Manohar, 1989) offers a probe sensitive only to gluonic states in the nucleus: $\Delta(x,Q^2)$

Gluon Structure of Nuclei

• Understanding glue is a key challenge of NP and central goal of EIC

Studying gluons is tricky

- Gluon does not couple to photon
- Probed indirectly by electron scattering from nuclei

- A nuclear glue effect, free from contributions of any nucleon, could offer invaluable view of nuclear structure
- "Nuclear Gluonometry" (Jaffe, Manohar, 1989) offers a probe sensitive only to gluonic states in the nucleus: $\Delta(x,Q^2)$

Double Helicity-Flip Structure Function $\Delta(x, Q^2)$

- $\Delta(x, Q^2) \Rightarrow$ helicity amplitude $A_{+-,-+}$
 - Photon helicity flip of two
 - Unavailable to bound nucleons or pions
 - Purely gluonic observable
- Hadrons: Gluonic Transversity
- Nuclei: Exotic Glue
 - · Gluons not associated with a nucleon
- Unpolarized e beam on transversely polarized nuclei, spin ≥ 1

- Lattice QCD signal seen in non-physical d: NPLQCD Collab, P.Rev.D 96, 2017
- JLab Letter of Intent 12-16-006: Transversely polarized ¹⁴N target
- Very interesting for EIC; need light ions! d, ⁶Li, ⁷Li, ²³Na²

Double Helicity-Flip Structure Function $\Delta(x, Q^2)$

- $\Delta(x, Q^2) \Rightarrow$ helicity amplitude $A_{+-,-+}$
 - Photon helicity flip of two
 - Unavailable to bound nucleons or pions
 - Purely gluonic observable
- Hadrons: Gluonic Transversity
- Nuclei: Exotic Glue
 - Gluons not associated with a nucleon
- Unpolarized e beam on transversely polarized nuclei, spin ≥ 1

- Lattice QCD signal seen in non-physical d: NPLQCD Collab, P.Rev.D 96, 2017
- JLab Letter of Intent 12-16-006: Transversely polarized ¹⁴N target
- Very interesting for EIC; need light ions! d, ⁶Li, ⁷Li, ²³Na?

Double Helicity-Flip Structure Function $\Delta(x, Q^2)$

- $\Delta(x, Q^2) \Rightarrow$ helicity amplitude $A_{+-,-+}$
 - Photon helicity flip of two
 - Unavailable to bound nucleons or pions
 - Purely gluonic observable
- Hadrons: Gluonic Transversity
- Nuclei: Exotic Glue
 - Gluons not associated with a nucleon
- Unpolarized e beam on transversely polarized nuclei, spin ≥ 1

- Lattice QCD signal seen in non-physical d: NPLQCD Collab, P.Rev.D 96, 2017
- JLab Letter of Intent 12-16-006: Transversely polarized ¹⁴N target
- Very interesting for EIC; need light ions! d, ⁶Li, ⁷Li, ²³Na?

Thanks to BNL-MIT ³He Collaboration, JLab ³He Group (JP Chen), H. Avakian, Nuclear Gluonometry Collaboration

Thank you for your attention!

Parameter	Bates 88-02 Target Achieved	CLAS12 Target Proposed
Pumping cell pressure (mbar)	2.6	100
Pumping cell volume (cm^3)	200	120
Target cell volume (cm^3)	79	100
Target cell length (cm)	16	20
Number of atoms in pumping cell	$1.2 imes 10^{19}$	3×10^{20}
Number of atoms in target cell	6×10^{19}	$1.5 imes 10^{22}$
Holding field (T)	0.003	5
Polarization	40%	60%
Incident electron beam energy (GeV)	0.574	10
Cell temperature (K)	17	5
Target thickness $(^{3}\text{He}/\text{cm}^{2})$	$1.2 imes 10^{19}$	3×10^{21}
Beam current (μA)	10	2.5
Luminosity $(^{3}\text{He/cm}^{2}/\text{s})$	$7.2 imes 10^{32}$	$4.5 imes 10^{34}$

High Field MEOP at 1 mbar

Lattice QCD Guidance for Δ

- Initial calculations for first moment of Δ on spin-1 $\phi~(s\bar{s})$
 - $m_{\pi} = 405 \,\mathrm{MeV}$
 - Gave definitive signal¹
- Following year, first moment of Δ calculated on non-physical d
 - $m_{\pi} = 806 \,\mathrm{MeV}$
 - Again definitive signal was seen²
- Results have generated significant interest in an observable mostly ignored since 1989
- Calculation with physical *d* underway

¹Detmold, Shanahan, P.Rev.D 94, 2016 ²NPLQCD Collab, P.Rev.D 96, 2017

Lattice QCD Guidance for Δ

- Initial calculations for first moment of Δ on spin-1 $\phi~(s\bar{s})$
 - $\cdot m_{\pi} = 405 \,\mathrm{MeV}$
 - Gave definitive signal¹
- Following year, first moment of Δ calculated on non-physical d
 - $m_{\pi} = 806 \,\mathrm{MeV}$
 - Again definitive signal was seen²
- Results have generated significant interest in an observable mostly ignored since 1989
- Calculation with physical *d* underway

¹Detmold, Shanahan, P.Rev.D 94, 2016 ²NPLQCD Collab, P.Rev.D 96, 2017

Lattice QCD Guidance for Δ

- Initial calculations for first moment of Δ on spin-1 $\phi~(s\bar{s})$
 - $m_{\pi} = 405 \,\mathrm{MeV}$
 - Gave definitive signal¹
- Following year, first moment of Δ calculated on non-physical d
 - $m_{\pi} = 806 \,\mathrm{MeV}$
 - Again definitive signal was seen²
- Results have generated significant interest in an observable mostly ignored since 1989
- Calculation with physical d underway

¹Detmold, Shanahan, P.Rev.D 94, 2016 ²NPLQCD Collab, P.Rev.D 96, 2017

