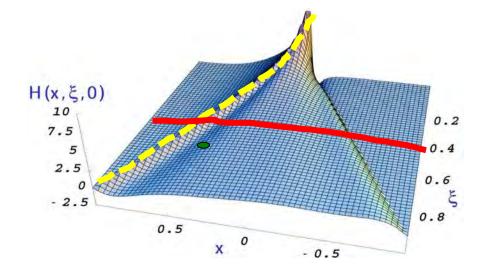
Hall B Status and Future

[V.D. Burkert, L. Elouadrhiri, et al., Nuclear Inst. and Methods in Physics Research, A 959 (2020) 163419]

The Current Run



Run Group C Physics Goals

Proton and Neutron Spin Structure

- DIS inclusive and flavor-tagged spin structure functions
- Semi-inclusive DIS (SIDIS) to access Transverse Momentum Distributions (TMDs), dihadron production and backward baryon production
- Deeply Virtual Compton Scattering (DVCS) to access Generalized Parton Distributions (GPDs); Target single and beam/target double spin asymmetries in proton and neutron DVCS

Current Run-Group Experiments

Run Group C: 10.5 GeV highly polarized beam with 4/8 nA current in Hall B using the longitudinally-polarized frozen (deuterated) ammonia target

E12-06-109: Longitudinal spin structure of the nucleon (Contact: S. Kuhn)

E12-06-109A: DVCS on the neutron with a polarized deuterium target (Contact: S. Niccolai)

E12-06-119(b): DVCS on a longitudinally polarized proton target

(Contact: F. Sabatie)

- **E12-07-107:** Spin-orbit correlations with a longitudinally polarized target (Contact: H. Avakian)
- **E12-07-107A:** Studies of single baryon production in the target fragmentation region with a Longitudinally polarized target (Contact: T. Hayward)
- E12-09-007(b): Study of partonic distributions using SIDIS kaon production (Contact: K. Hafidi)
- **E12-09-007A:** Studies of dihadron electroproduction in DIS with longitudinally polarized hydrogen and deuterium targets

(Contact: C. Dilks)

E12-09-009: Spin-orbit correlations in kaon electroproduction in DIS

(Contact: H. Avakian)

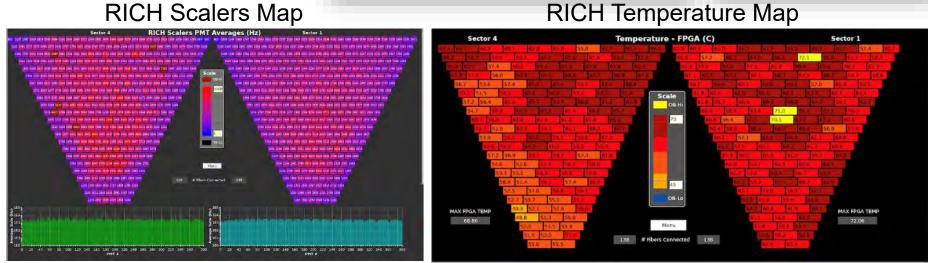
Run Group C Schedule

- Eight month run in June 2022 March 2023
 Originally 185 PAC days, reduced to 120 PAC days in Jeopardy
 → 240 Calendar days scheduled + 4 days of commissioning
 Proton (NH3) and Deuteron (ND3), auxiliary C, CH2, CD2, *l*He/foil targets
- Outlook: return to "FTon" running over the Winter break
- Collect more data in "FTon" configuration from 1/16/2023 to 3/20/2023.

[Sebastian Kuhn]

Experimental Setup

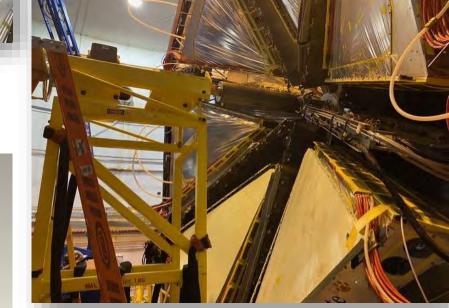
2nd RICH Installed and Operating



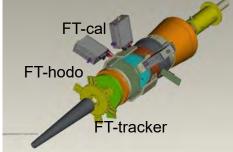
- Two sectors of FD with RICH, four with LTCCs
- 50,048 channels in total

[Valery Kubarovsky]

RICH Scalers Map


Nov 2022 Patrick Achenbach

Setup Change in Aug 2022



 "FTon": forward tagger calorimeter, reduced raster size and beam current

 "FToff": no forward tagger calorimeter, full raster size, full beam current

Nov 2022 Patrick Achenbach

[Bob Miller]

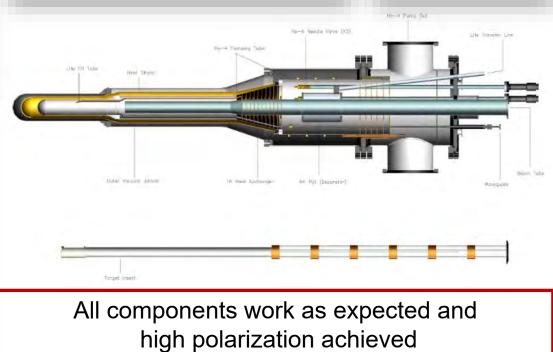
Manual Work in Hall B

HTCC was moved to the floor

[Stepan Stepanyan]

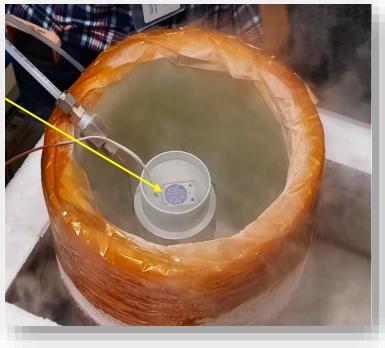
A new large Moller cone was installed

FT tracker, hodoscope, and the calorimeter were removed


Changeover done by technicians and others within one week (Aug 26 – Sep 3)

Cryo-Target System

Complex high-maintenance device for long (June 2022 – March 2023) data-taking period



Nov 2o22 Patrick Achenbach

Polarized Frozen Ammonia

Fresh target sample (ammonia beads in cell)

DNP through 140 GHz µwave irradiation
 Cooled to 1 K with le evaporation refrigerator

Target cell after exposure to beam (about to be unloaded)

Samples 5 cm long

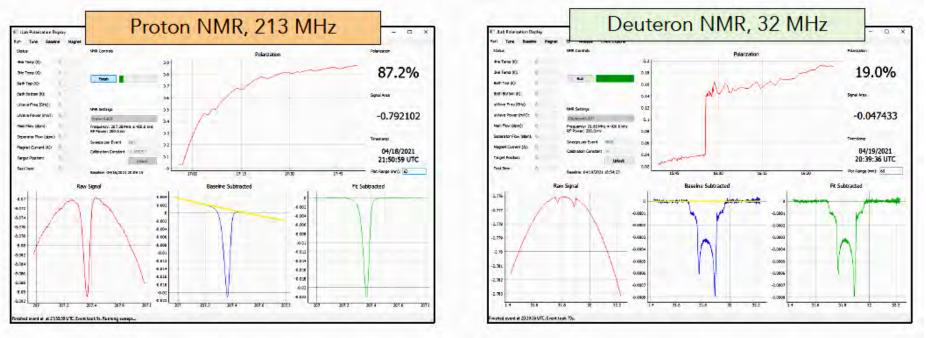
Annealing performed once or twice per week for recovering the initial degree of polarization after radiation-induced depolarization

[Sebastian Kuhn]

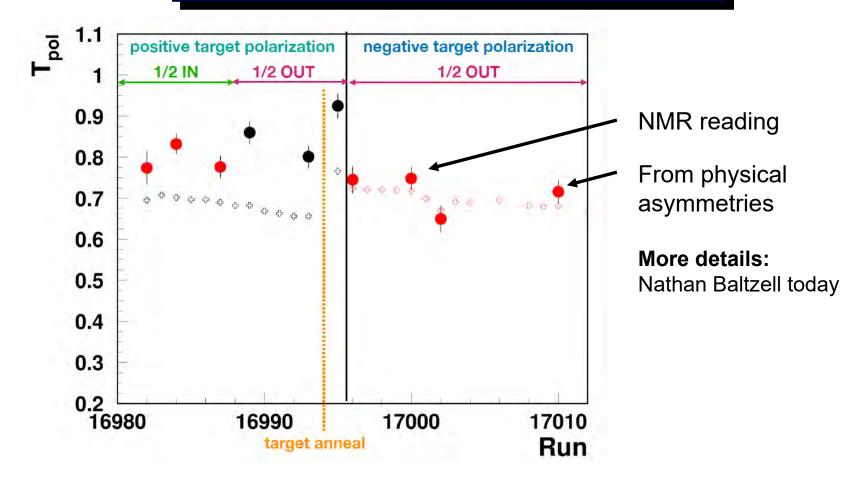
Nov 2022 Patrick Achenbach

Changing Target Samples

Target inside cell:


Cell inside bath:

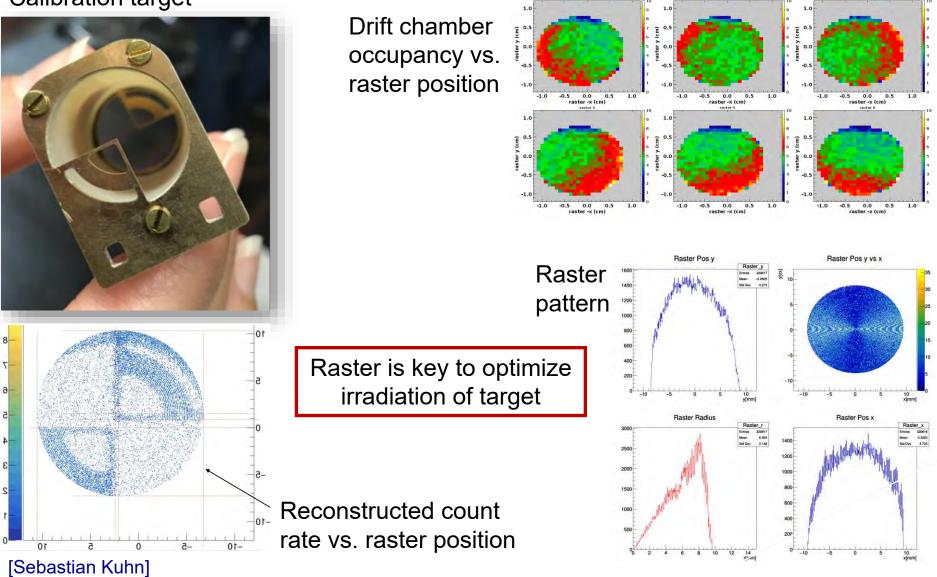
Target change on Oct 27 [Chris Keith]


Nov 2022 Patrick Achenbach

- Ammonia used because of high radiation hardness as a proton target (and deuterated ammonia as neutron target)
- Read-out of relative polarization from NMR pick-up circuit (susceptible also to non-irradiated target volume)

Control of polarization is key to optimize annealing and target change procedures

Cross-Check of NMR Read-Out

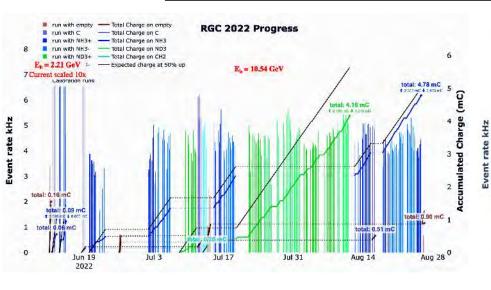


- Physical asymmetries support NMR readings
- New online tool to track polarization

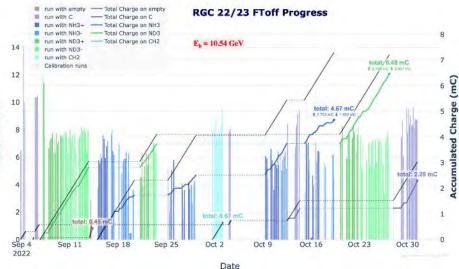
Beam Rastering

RASTER R1occupancy

Calibration target



Nov 2022 Patrick Achenbach


Run Group C Data Taking

Progress on Data Collection

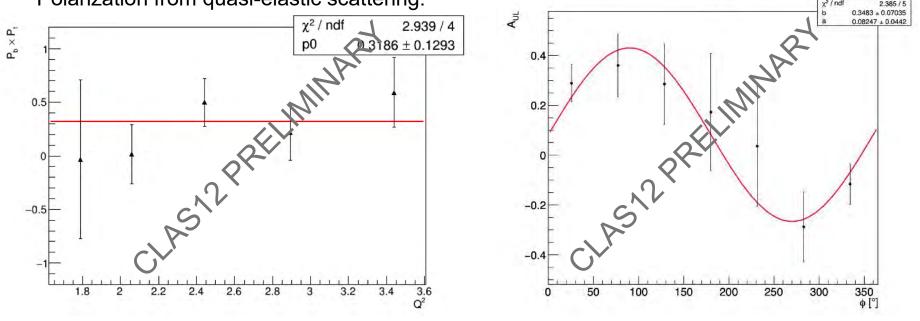
1st period: June – Aug 2022

2nd period: Aug – Dec 2022

- run with empty Total Charge on empty
 - run with C Total Charge on C
 - run with NH3+ ---- Total Charge on NH3
 - run with NH3- Total Charge on ND3
- run with ND3+ _
- run with ND3-

Calibration runs

Expected Charge


[Sebastian Kuhn]

Preliminary Data Analysis from ND₃

Using proton DVCS from "FTon" period

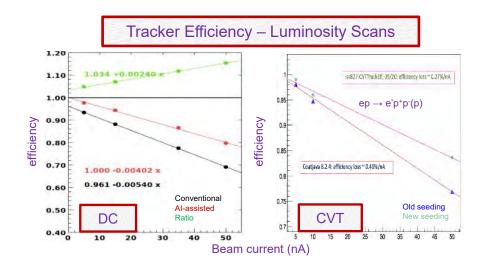
 $< Q^2 > = 2.231, < x_B > = 0.1801, < -t > = 0.4061$

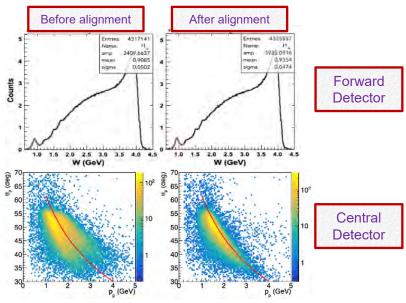
TSA

Polarization from quasi-elastic scattering:

[Maxime Defurne, Noémie Pilleux and Silvia Niccolai]

Extraction of neutron longitudinal target spin asymmetries associated to neutron DVCS


Alignments, Calibrations and Cooking



CLAS12 CALCOM Status

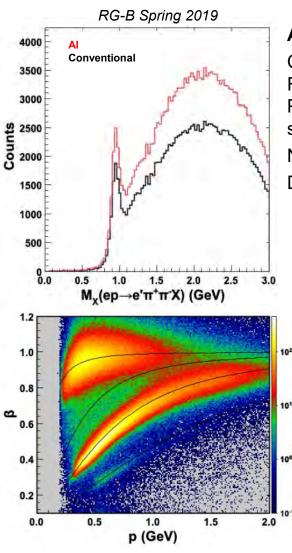
Pass-2 re-calibration status:

- <u>RG-B Spr19 (LD2)</u> calibrations completed for all subsystems; ready for cooking review held on Oct. 28 (chair Marco Battaglieri) cooking to begin by end of Nov. after addressing items raised during the review.
- <u>RG-A Spr19 (LH2)</u> calibrations completed for all subsystems; detailed pass-2 vs. pass-1 reconstruction studies in progress; ready for cooking review to be scheduled in the first half of November.
- <u>RG-K Win18 (LH2)</u> tracker alignment work nearly complete; initial pass-0 for assessment to be launched shortly; two-month-long calibration sequence to begin before the end of Nov.
- <u>Next steps</u> "ready for calibration" reviews for RG-B (F19/Win20) and RG-A (F18) datasets later this month.
- <u>Status</u> Work proceeding efficiently with good interactions with Run Groups, Software Group, and CALCOM.

Polar angle vs. momentum for elastic protons

[Daniel Carman]

Reconstruction Software Status


Reconstruction software:

- All major software development completed, or in the final stage (open pull requests)
- Extensive validation from RG-A and RG-B

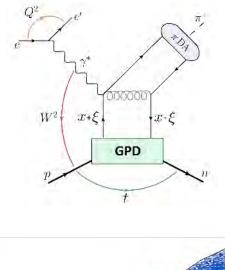
Pass2 vs. Pass1:

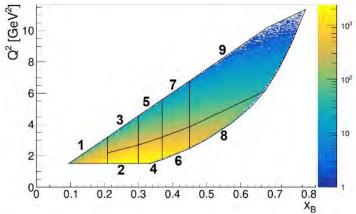
- Large increase in charged particle reconstruction efficiency (10% per track or more)
- Resolution improvements due to alignment (both FD and CD) and removal of tracking biases and energy loss correction (CD)
- Improvements to neutral reconstruction in ECAL (handling of overlapping clusters) and FT (improved calibrations)
- Several updates to EB to improve track-hit matching and provide more information for analyses

[Raffaella De Vita]

CD PID after energy loss, showing pion, proton and deuteron bands

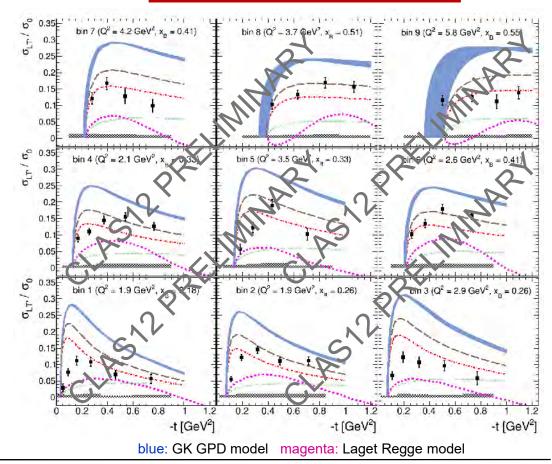
Alignment of trackers:


CVT alignment based on Kalman Filter Alignment algorithm (see S. Paul *et al. (CLAS)*, arXiv:2208.05054, submitted to NIM)


New implementation of DC alignment DC-CVT alignment based on beam spot method

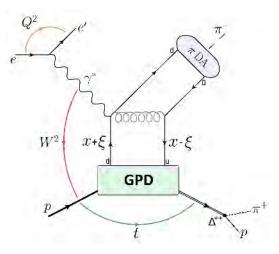
RGA Data Analysis and Publications

Hard Exclusive π⁺ Electro-Production off Protons



A multidimensional study of the structure function ratio $\sigma_{LT'}/\sigma_0$ from hard exclusive π^+ electro-production off protons in the GPD regime

S. Diehl^{ah,f}, A. Kim^f, K. Joo^f, P. Achenbach^{an}, Z. Akbar^{au,l}, M.J. Amaryan^{ag}, H. Atac^{am}, H. Avagyan^{sn}, C. Ayerbe Gayoso^{av},

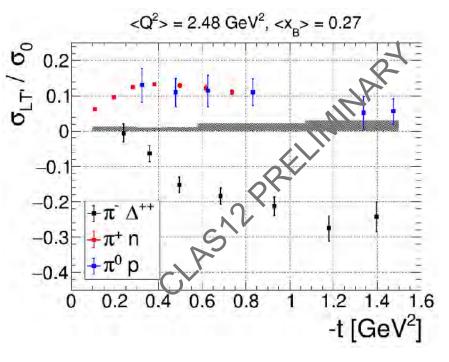

Stefan Diehl (JLU Gießen and UCONN) arXiv: 2210.14557 submitted to PLB

Access to chiral-odd GPDs

Nov 2o22 Patrick Achenbach

Hard Exclusive $\pi^{-}\Delta^{++}$ Electro-Production BSA off Protons

First measurement of hard exclusive π^{-} (Δ^{-+}) electro-production beam spinasymmetries off the proton


S. Dichl,^{1,2} N. Trotta,² and K. Joo² (The CLAS Collaboration)

¹II. Physikalisches Institut der Universität Gießen, 35392 Gießen, Germany ²University of Connecticut, Storrs, Connecticut 06269

The polarized cross section ratio σ_{LT^2}/σ_5 from hard exclusive $\pi^-(\Delta^{\pm\pm})$ electro-production off an uppolarized hydrogen target has been extracted based on beam-spin asymmetry measurements using a 10.2 GeV / 10.6 GeV incident electron beam and the CLAS12 spectrometer at Jefferson Lab. The study, which provides the first observation of this channel in the deep-inelastic regime, focuses on very forward kinematics $(t/Q^2 \ll 1)$ with a wide kinematic range of π_8 in the valence regime, and virtualities Q^2 ranging from 1.5 GeV² up to 6 GeV². The reaction provides a first direct, clean access to the d-quark content of the nucleon and to $p \to \Delta^{++}$ transition generalized parton distributions. A comparison to existing results for the hard exclusive $\pi^+(n)$ and $\pi^0(p)$ electro-production is provided.

PACS numbers: 13.60.Le, 14.20.Dh, 14.40.Be, 24.85.+p $\,$

Stefan Diehl (JLU Gießen and UCONN) Analysis review

Access to transition GPDs

3D structure of resonances

Multidimensional Study of SIDIS Single π^- and π^0 BSA

-0.04

0.2 0.4 0.6

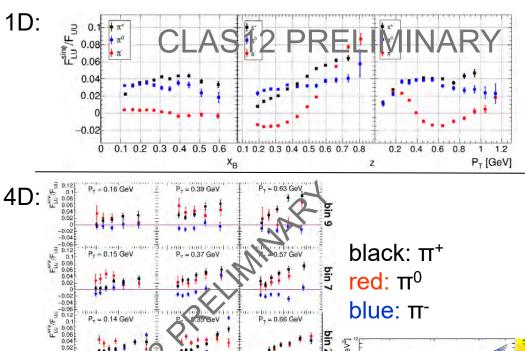
 $\frac{d\sigma}{dx_B dQ^2 dz d\vec{P_T} d\phi} = K(x, y, Q^2) \{ F_{UU,T} + \epsilon F_{UU,L} + \epsilon F_{UU}^{\cos 2\phi} \cos(2\phi) + \sqrt{2\epsilon(1+\epsilon)} F_{UU}^{\cos\phi} \cos(\phi) + \lambda_c \sqrt{2\epsilon(1-\epsilon)} F_{LU}^{\sin\phi} \sin(\phi) \}$

 $F_{LU}^{sin\phi} = \frac{2M}{Q} \zeta \left(\frac{-\hat{h} \cdot k_T}{M_h} \left(x e H_1^\perp + \frac{M_h}{M} f_1 \frac{\bar{G}^\perp}{z} \right) + \frac{\hat{h} \cdot P_T}{M} \left(x g^\perp D_1 + \frac{M_h}{M} h_1^\perp \frac{\bar{E}}{z} \right) \right)$

A multidimensional study of SIDIS $\pi^$ and π^0 beam spin asymmetry over a wide range of kinematics

Stefan Diehl^{1,2}, Andrey Kim², Kyungseon Joo²

¹Justus Liebig University Giessen ²University of Connecticut

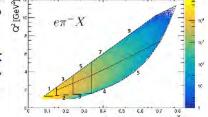

version 1 - September 28 2022

Abstract

A high perision study of the structure function ratio $F_{21}^{(m)}F_{12}$ for corresponding to the polarized derium beam spin asymmetry in semiindusive deeps industive scattering has been performed over a wide range of kinematics. $F_{22}^{(m)}$ is a evist-3 quantity which provides information about the quark givon correlations in the nucleon. The contribution will present for the first time a multidimensional study of single π^{-1} and π^{0} SBDS over a large kinematic range of z, z_{N}, P_{T} and Q^{2} with virtualities Q^{2} ranging from 1 GeV up to 8 GeV.

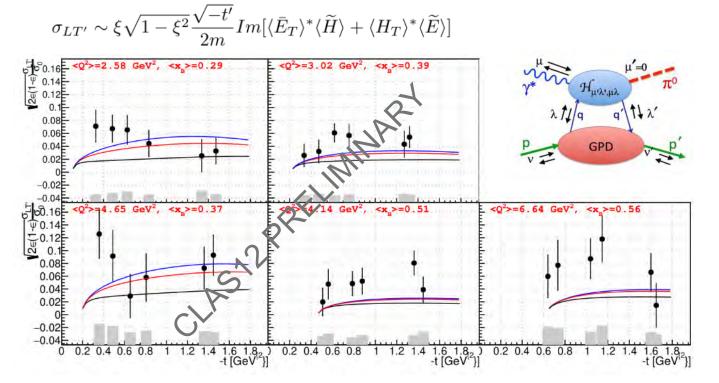
Extension of published π⁺ SIDIS
Flavor decomposition of TMDs

Stefan Diehl (JLU Gießen and UCONN) Analyis note



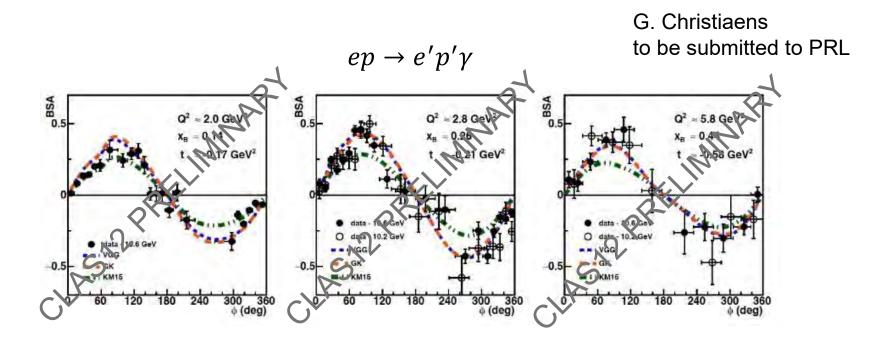
P_ = 0.55 GeV

0.2 0.4 0.6

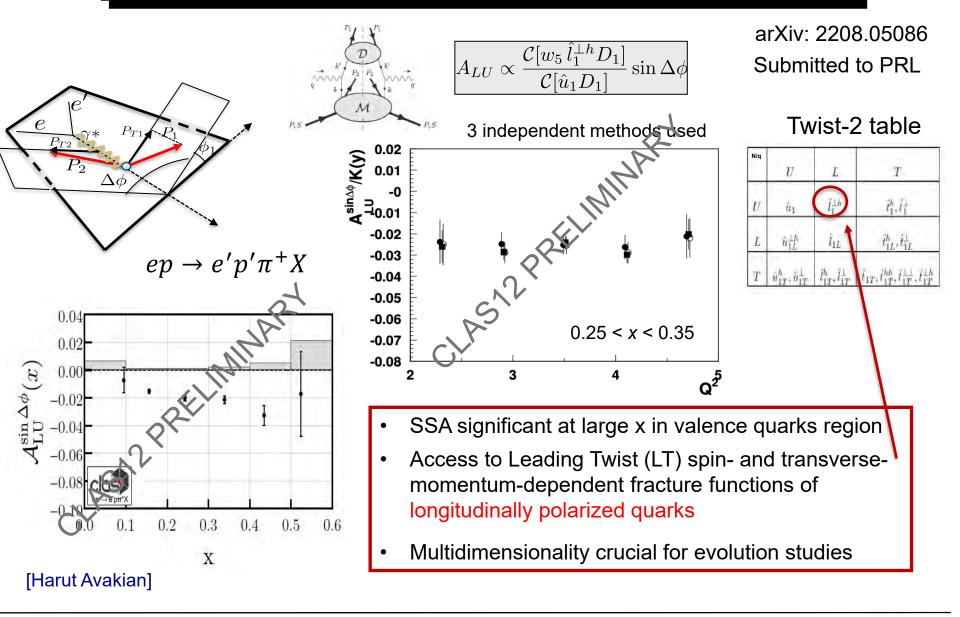

P_T = 0.37 GeV.

0.2 0.4 0.6

Nov 2022 Patrick Achenbach

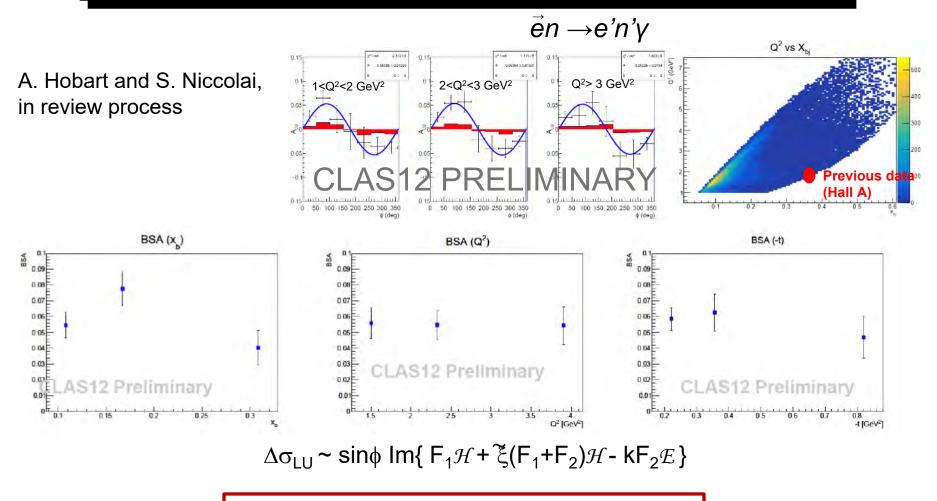

Beam Spin Asymmetries in Deeply Virtual π^0 Production

Andrey Kim (UCONN) Analysis note approved


Access to the chiral-odd GPDs from beam spin asymmetries in exclusive pion electroproduction

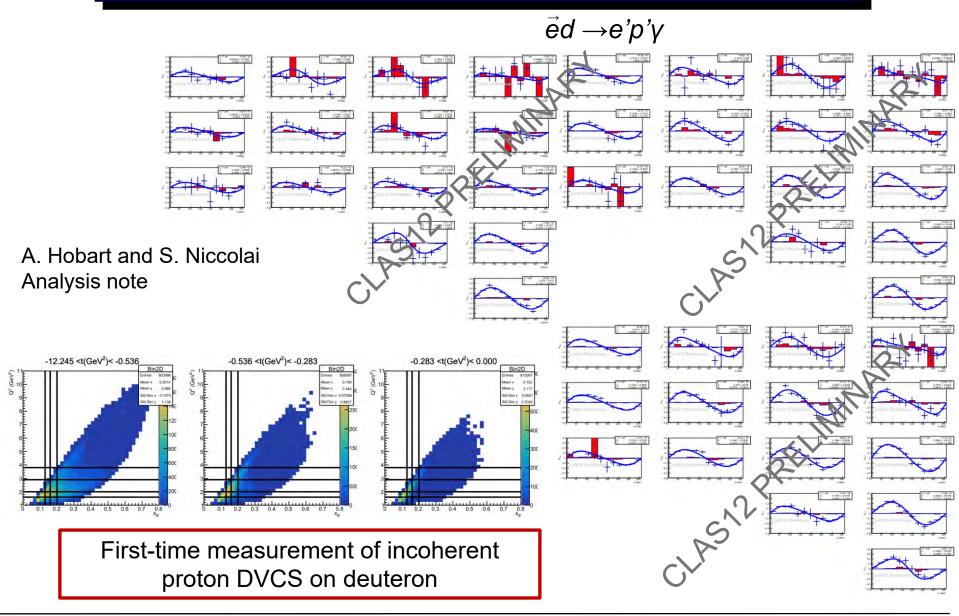
DVCS Beam-Spin Asymmetries in Extended Valence Region

Greatly extend the Q^2 and Bjorken-*x* phase space in the valence region


Correlations in Back-To-Back 2-Hadron Production

RGB Data Analysis and Publications

Beam Spin Asymmetries in Large Kinematic Range



First-time measurement of neutron DVCS with detection of the active neutron

[Adam Hobart]

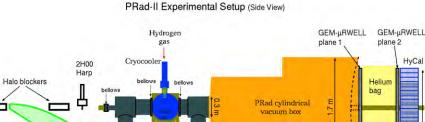
Nov 2022 Patrick Achenbach

Beam Spin Asymmetries in Large Kinematic Range

Nov 2022 Patrick Achenbach

PAC 50 Closeout 15 Jul 2022

NUMBER	TITLE	CONTACT PERSON	HALL	DAYS REQUESTED	DAYS AWARDED	SCIENTIFIC RATING	PAC DECISION
New & Conditional Proposals							
C12-21-004	Semi-Inclusive Deep Inelastic Scattering Measurement of A=3 Nuclei with CLAS12 in Hall B	Larry Weinstein	В	58			C2
012-21-000	A Direct Detection Search for Hidden Sector New Particles in the 3-60 MeV Mass Range	Ashot Gasparian	В	60	60	A	Approved
PR12-22-003	Precision Measurement of the Neutral Pion Transition Form Factor	Ilya Larin	В	67	67	A-	Approved


Tagger

E12-07-107A Studies of Single Baryon Production in the Target Fragmentation Region with a Longitudinal Polarized Target Hall B

Endorsed

Two of the approved experiments require PRad-II exp. setup:

Hall-B did quite well

HvCa

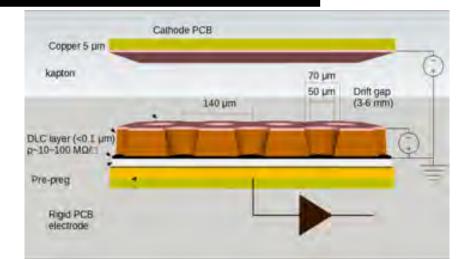
0.4 m

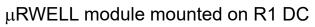
2.0 m

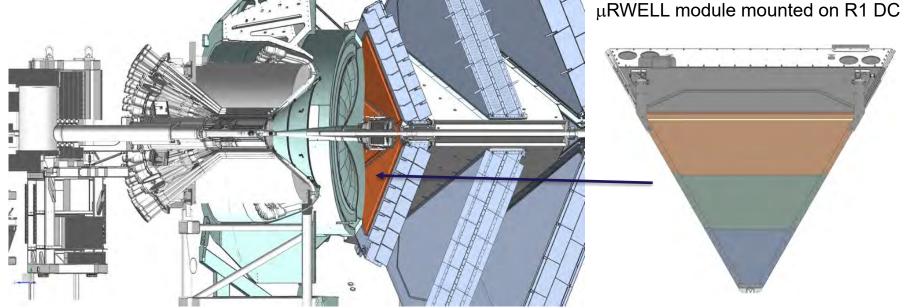
Outlook

- RG-D: July 17 to September 17, 2023, must have 30 PAC days to compete
- RG-K: September 20 to December 17 should complete ~50% of the approved beam time
- RG-E: January 15 to March 17, 2024, scheduled for 50% of the approved beam time
- Next with approved beamtime request is RG-L (ALERT), 2024 SAD right time to install ALERT program with four experiments will use a new low energy recoil detector, now in construction at Orsay and ANL, to replace CVT, 55 PAC days and will run in one setting

Run groups ready to run:

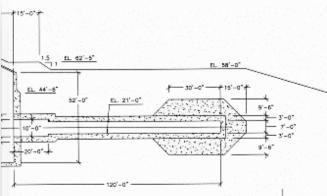

- RG-A, has >70 PAC days to run
- RG-B still have 40 PAC days
- RG-E remaining 30 PAC days
- RG-K remaining beamtime, about 50 PAC days, at 6.6 and 8.8 GeV
- RG-M has 10 days at 1.1 GeV, non-standard energy
- Non-CLAS12 experiment, RG-I, Heavy photon search, 102 PAC days remain at 2-4 GeV


Request for early scheduling:


Non-CLAS12 experiment, RG-J, PRadII, π⁰TFF, X17

Luminosity (x2) Upgrade

- Improvement by a factor of two to $L = 2 \times 10^{35} \text{ cm}^{-2} \text{sec}^{-1}$: µRWELL with capacitive sharing readout
- Time frame of 2 to 3 years



Beam Dump (Phase 1) Upgrade

Hall-B needs:

- Alert: 500 900 nA
- He-3 expt: 2500 nA
- Lumi upgrade: 5000 nA

- No need for beam blocker anymore due to new safety evaluation
- Faraday cup will moved down towards the end of the tunnel
- Work to be accomplished in upcoming scheduled accelerator down
- Funding for this phase of the upgrade secured (Phase 2 requires entirely new high-power dump)

Future of CLAS: 20+ GeV Upgrade

ApcTP Focus Program in Nuclear Physics 2022 Hadron Physics Operatives with JLab Energy and Luminosity Upgrade

- Higher beam energy
- Positron beam
- Higher luminosity

OPPORTUNITIES WITH JLAB ENERGY AND LUMINOSITY UPGRADE

26 September 2022 — 30 September 2022

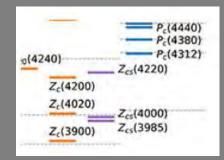
ECT* - Villa Tambosi Strada delle Tabarelle, 286 Trento - Italy

Review

Progress in Particle and Nuclear Physics Volume 127, November 2022, 103985

ELSEVIER

volume 127, November 20



Physics with CEBAF at 12 GeV and future opportunities

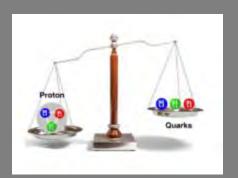
J. Arrington ^a, M. Battaglieri ^{b, o}, A. Boehnlein ^b, S.A. Bogacz ^b, W.K. Brooks ^j, E. Chudakov ^b, I. Cloët ^c, R. Ent ^b, H. Gao ^d, J. Grames ^b, L. Harwood ^b, X. Ji ^{e, f}, C. Keppel ^b, G. Krafft ^b, R.D. McKeown ^{b, h} $\stackrel{\otimes}{\sim}$ ⊠, J. Napolitano ^g, J.W. Qiu ^{b, h}, P. Rossi ^{b, n} ... X. Zheng ^k

High Energy Workshop Series 2022

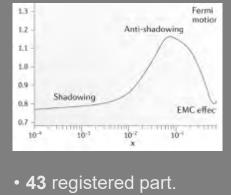
Hadron Spectroscopy with a CEBAF Energy Upgrade

- 38 registered part.
- 8 talks

Physics Beyond the Standard Model


- **37** registered part.
- 6 talks

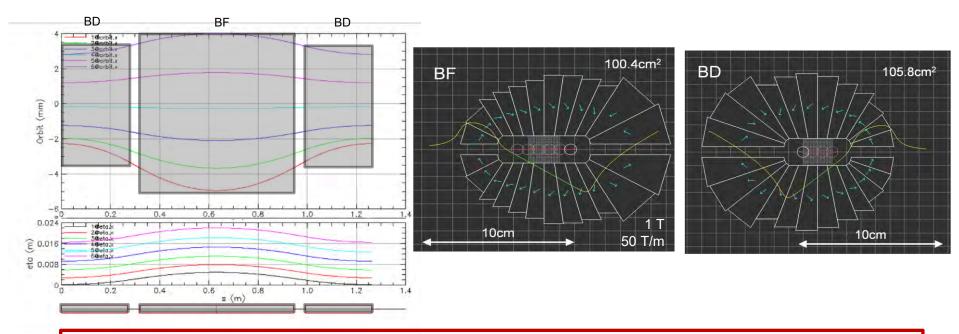
The Next Generation of 3D Imaging


- 55 registered part.
- **13** talks + summary talk

J/Psi and Beyond

- 38 registered part.
- 7 talks + two 1-slide pres.

Science at Mid x: Antishadowing and the Role of the Sea


• 14 talks

White paper in preparation:

- deeper access to quarkgluon dynamics
- opening new opportunities on studies of charm sector

Beam Energy Doubling in CEBAF

Large momentum acceptance fixed-field alternating-gradient cell, transporting six beams with energies spanning a factor of two through same string of permanent magnets

- FFAs combine relatively less expensive magnets with increased beam focus of strong focusing machines such as synchrotrons
- Closely spaced orbits for all six beams (~ 1 cm)
- CBETA demonstrated 42, 78, 114, and 150 MeV in common chamber

Summary

- Run Group C running successfully first polarized target experiment
- Reconstruction upgrades, partly AI assisted, improved performance
- Pass-2 cooking starting this month
- Several publications submitted and analyses in review
- Detector und beamdump upgrades progressing