

Measuring neutron polarisation in pn production using CLAS

William Booth The University of York

Supervisors: Daniel Watts, Nicholas Zachirou

Motivation

- Determining neutrons polarisation could provide insight to:
 - the recently discovered dibaryon, d*(2380)
 - the nature of neutron stars
- Neutron polarimeters typically require dedicated equipment
- This novel utilization of the CLAS's Start Counter provides the opportunity to measure neutron polarization in the 6GeV energy regime and at wide angles, using existing data.

Slide 2 of 17

Jefferson Lab

- Established 1984
- Located in Virginia, USA
- A US Department of Energy facility
- A world leading electron accelerator (CEBAF)
- Various experimental halls

Slide 3 of 17

The CLAS detector (1998-2012)

- CEBAF Large
 Acceptance
 Spectrometer
- A many component detector system
- Accepting beam energies up to 6GeV

Slide 4 of 17

The Start Counter

- A set of 3mm thick plastic scintillators surrounding the target, parallel to the beam line.
- Used to determine start time of particle events

Figure 3: Photo of the start counter during CLAS's construction. https://www.jlab.org/Hall-B/album/index.html

Experimental run g13a

- Deuterium target
- Circularly polarised photon beam
- Investigation of dibaryon states

Experimental run g13a

- Deuterium target
- Circularly polarised photon beam

Differentiating the protons

- DOCA (Distance Of Closest Approach)
- The closest distance between two vertices

Differentiating the protons

• p1 and p2 defined by DOCA between photon and proton vertex

Missing mass of protons

• The distinction between p1 and p2 using DOCA is also clear in missing neutron mass

POCA cut

• Data selected to ensure event occurred in target

Slide 11 of 17

Summary of all cuts

Data selection after all cuts

 Data is visible as a peak showing where two independent measurements of missing mass agree

Missing Neutron Mass

Slide 12 of 17

Data selection after all cuts

 Data is visible as a peak showing where two independent measurements of missing mass agree

Missing Neutron Mass

Slide 13 of 17

SAID model

Relates analysing power to scattering angle and energy

Slide 14 of 17

Preliminary measurements of neutron polarisation

Py – induced/transverse polarisation

Cx – transferred polarisation

The CLAS12 detector

- New upgrade to CLAS
- Capable of beam energies up to 12GeV
- Run Group M
 - Electron scattering experiments
 - various nuclear targets
 - Will provide new SRC analysis

Slide 16 of 17

The silicon vertex tracker (SVT)

- Set of silicon sensors in the central detector
- Used to measure momentum and determine vertex of charged particles from the target
- Can also be utilized in the same way as the start counter as a neutron polarimeter

Summary

- g13 neutron polarisation study to be finalised
 - Process refined
 - Simulations done for comparison
- Analysis note produced
- Begin analysis on CLAS12 data with RGM
 - Provide first polarisation measurements of SRCs utilising the SVT

Thank you