ML for the RICH alignment

Armen Gyurjinyan
INFN

Outline

- Introduction to Fast Monte Carlo simulations
- RICH Geometry for the simulation
- Generation and reconstruction
- Quantify the quality of alignment
- Geometry and output file structure
- Best parameters for alignment with NN model
- Minima finding with FCN and SGD
- Fully connected network
- Stochastic gradient descent with momentum
- ML results

RICH geometry

Few simplifications in the geometry definitions

- 1 lateral mirror per side instead of 2
- 1 spherical mirror instead of 10
- each aerogel layer is made by only 1 large tile; tile segmentation is done in the data output based on the emission point coordinates
- the MAPMT array is segmented in a regular matrix of $6.5 \times 6.5 \mathrm{~mm}$ pixels; PMT segmentation is done into output data based on the hit point coordinates

Event generation

1. Generate a charged particle (momentum and production vertex) and propagate to the closest aerogel layer

- no magnetic field, only straight tracks
- only electrons

2. Propagate the track to the MAPMT plane and calculate the pixel number (cluster position)
3. Calculate the number of Cherenkov photons (Poisson distribution with given mean)
4. For each photon

- calculate the emission point: randomly along the particle track in the aerogel
- calculate the Cherenkov angle based on β and n : some smearing is applied ($\sigma C=4.5$ mrad)
- propagate the photon through the RICH based on the given geometry until it reaches the MAPMT
- calculate the pixel number
- store information on the generated photon: hit position, path length and time, number of reflections, mirror hit position, etc

Event reconstruction

Track hit

- Take the generated pixel number (if any), calculate the position with reconstruction (modified) geometry

Photon hits

- take the generated pixel hit, calculate the position with reconstruction (modified) geometry: detected hit
- calculate the emission point: mid point in the aerogel
- first try Cherenkov angles: θ from the nominal refractive index, φ from the generated hit (to have fast convergence)
- propagate the photon to the MAPMT with the current (modified) geometry
- use real data reconstruction method

Store the results of the reconstructed event

- hit position, path length and time, number of reflections, mirror hit position, etc

Direct photons

Emission Point

MAPMT hits

Generated events

Cherenkov angle reconstruction by tiles

from gauss fit: mean m, sigma σ

- expected values are
mean: <m>=0
sigma: $\langle\sigma\rangle=$ input resolution
- chisquare

$\chi^{2}=\left(\frac{m-\langle m\rangle}{\Delta m}\right)^{2}+\left(\frac{\sigma-\langle\sigma\rangle}{\Delta \sigma}\right)^{2}$

Output for all tiles:

$$
\chi^{2}=\frac{1}{N} \sum_{i=1}^{N} \chi_{i}^{2}
$$

FastMC reconstruction output

ID, Layer ID, $\boldsymbol{\Delta \boldsymbol { \theta }}$ mean, error, $\boldsymbol{\Delta \boldsymbol { \theta }}$ std, error, N entries, $\chi 2$

Direct photons	0	0	0.000	0.000	0.000	0.000	0	0.0
	0	1	-0.283	0.323	4.817	0.156	22	15.7
	0	2	0.000	0.000	0.000	0.000	0	0.0
1 reflection left mirror	1	0	0.000	0.000	0.000	0.000	0	0.0
	1	1	-0.047	0.199	4.835	0.055	4	1.9
	1	2	0.000	0.000	0.000	0.000	0	0.0
1 reflection right mirror	2	0	0.000	0.000	0.000	0.000	0	0.0
	2	1	-0.231	0.410	4.704	0.345	5	4.5
	2	2	0.000	0.000	0.000	0.000	0	0.0
1 reflection bottom mirror	3	0	0.000	0.000	0.000	0.000	0	0.0
	3	1	0.000	0.000	0.000	0.000	0	0.0
	3	2	0.000	0.000	0.000	0.000	0	0.0
2 reflections spherical + b1	4	0	0.000	0.000	0.000	0.000	0	0.0
	4	1	-0.178	0.125	4.856	0.476	10	2.4
	4	2	0.000	0.000	0.000	0.000	0	0.0
2 reflections spherical + b2	5	0	0.000	0.000	0.000	0.000	0	0.0
	5	1	-0.275	0.386	4.740	0.340	18	1.4
	5	2	0.000	0.000	0.000	0.000	0	0.0
other	6	0	0.000	0.000	0.000	0.000	0	0.0
	6	1	1.999	2.102	11.727	5.834	16	95.5
	6	2	0.000	0.000	0.000	0.000	0	0.0

FastMC reconstruction geometry input

AerogelB1 surface: shifts (mm), thetax, thetay,thetaz (rad)
0.0 .1.
0.0040 .0020 .0

AerogelB2 surface: shifts (mm), thetax,thetay,thetaz (rad)
0 . 0.1 .
0.0040 .000 .0

AerogelB3 surface: shifts (mm), thetax, thetay,thetaz (rad)
0 . 0.0.
0.0000 .0000 .0

FrontalMirrorB1 surface: shifts (mm), thetax, thetay, thetaz (rad)
0.0 .1.
0.0040 .0020 .0

FrontalMirrorB2 surface: shifts (mm), thetax, thetay,thetaz (rad)
0.0 .1.
0.0040 .0000 .0

PlanarMirrorL surface: shifts (mm), thetax,thetay,thetaz (rad)
0.0 .0.
0.000 .000 .0

PlanarMirrorR surface: shifts (mm), thetax, thetay,thetaz (rad)
0. 0. -1.
-0.010-0.002 0.0
BottomMirror surface: shifts (mm), thetax, thetay, thetaz (rad)
0 . 0.0 .
0. 0.0 .0

SphericalMirror surface: shifts (mm), thetax, thetay,thetaz (rad)
0 0. 0.0.
0.0020 .0010 .0

MAPMT surface: shifts (mm), thetax, thetay,thetaz (rad)
000
$0.0-0.0 \quad 0.0$

- Generate data with $\mathrm{z}=1 \mathrm{~mm}$ and $\theta_{\mathrm{y}}=0$ mrad
- Reconstruct data with grid $\mathrm{z}=(-5,10,1)$ mm and $\theta_{\mathrm{y}}=(-20,20,5) \mathrm{mrad}$
Total 144 grid points

Optimal point in the reconstruction grid should be close to generated data

NN training and optimal parameters finding

- Train neural network on 80% of grid data points and validate on 20% data points. Best model on validation data points will be our model
- Use stochastic gradient descent with momentum to find the optimal parameters for the best model.

Fully Connected Neural Network

In our case:
In our case:
$x_{1}{ }^{(1)}, x_{2}{ }^{(1)}$ are z, θ_{y}

$$
\begin{aligned}
& \hat{y}_{1}, \hat{\mathrm{y}}_{2}, \hat{\mathrm{y}}_{3}, \hat{\mathrm{y}}_{4}, \hat{\mathrm{y}}_{5} \text { are } \\
& \mathrm{X}^{2}{ }_{\mathrm{dp}}, \mathrm{X}_{\mathrm{a} 21}^{2}, \mathrm{X}^{2}{ }_{\mathrm{a} 2 \mathrm{r}}, \mathrm{X}_{\mathrm{s} 5 \mathrm{cb} 1}^{2}, \mathrm{X}^{2}{ }_{\mathrm{s} 5 \mathrm{cb} 2}
\end{aligned}
$$

Stochastic gradient descent with momentum

$$
\frac{d y}{d x}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

SGD

$$
x_{t+1}=x_{t}-\alpha * \nabla f\left(x_{t}\right)
$$

SGD + momentum

$$
v_{t+1}=\rho v_{t}+\nabla f\left(x_{t}\right)
$$

$$
x_{t+1}=x_{t}-\alpha * v_{t+1}
$$

" α " and " ρ " are constants

In our experiment
$\mathrm{h}=10^{-1} \mathrm{~mm}$ for aerogel 2 z
$\mathrm{h}=10^{-4} \mathrm{mrad}$ for aerogel2 θ_{y}

Results

Generated events geometry $z=1 \mathrm{~mm}, \theta_{\mathrm{y}}=0 \mathrm{mrad}$

Generated 200 starting point and the results are average of optimized points and error is standard deviation

Summary and Next steps

Summary

- Tested machine learning algorithm for 2d input parameters model training and predictions on simulated data
- Tested algorithm to find best parameter on simulated data for the given model

Next steps

- Implement errors for the output parameters
- Add more parameters for training and best parameters finding
- Use real data in place of simulated data

Thank you for your attention!
Questions?

Second Aerogel z-distance alignment comparison

Polynomial fit results

Machine learning results

Comparison of RMS and sum of chi-squares

RMS of Chi-squares

Sum of Chi-squares

Comparison of real vs generated photons

RGA electron tracks
 Nrefl $=0$

MAPMT hits

MAPMT hits

