Unpolarized Kaon electroproduction on Hydrogen and Deuterium target

Vallarino Simone INFN Ferrara & University of Ferrara December 13, 2022

Vallarino Simone - INFN Ferrara - UNIFE

Semi-Inclusive Deep Inelastic Scattering (SIDIS)

$$e + p \rightarrow e' + H + X$$

$$e + n \rightarrow e' + H + X$$

- Powerful tool to study the inner structure of nucleon, accessing to Transverse Momentum dependent Distribution functions (TMDs)
- The polarization in leptoproduction provides new dimensions for testing QCD
- Spin Asymmetries, in particular the large Single Spin Asymmetries (SSAs), can be related to TMDs
- Complementary measures with π and K can provide information about the Collins fragmentation mechanism
- These measures can be done with the CLAS12 detector, combining the high luminosity and the phase space extended after the 12 GeV upgrade
- To identify the high-momentum K a new Cherenkov detector for PID has been realized and installed in two sectors of CLAS12
- The proposal has been accepted and became the experiment E12-09-008 that is being performed by Run Group A (for Hydrogen) and B (for Deuterium)

2

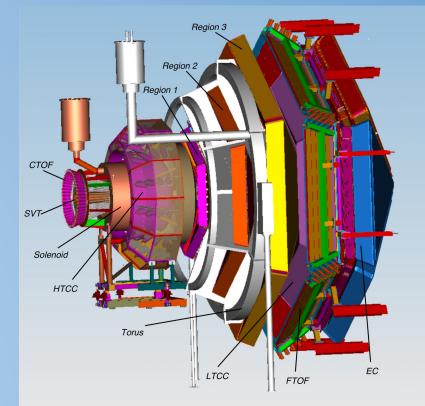
SIDIS cross section

 $\frac{d\sigma}{dx\,dy\,d\psi\,dz\,d\phi_h\,dP_{h\perp}^2} =$ $\frac{\alpha^2}{xyQ^2} \frac{y^2}{2(1-\varepsilon)} \left(1 + \frac{\gamma^2}{2x}\right) \left\{ F_{UU,T} + \varepsilon F_{UU,L} + \sqrt{2\varepsilon(1+\varepsilon)} \cos \phi_h F_{UU}^{\cos \phi_h} \right\}$ $+ \varepsilon \cos(2\phi_h) F_{III}^{\cos 2\phi_h} + \lambda_e \sqrt{2\varepsilon(1-\varepsilon)} \sin \phi_h F_{III}^{\sin \phi_h}$ + $S_{\parallel} \left| \sqrt{2 \varepsilon (1 + \varepsilon)} \sin \phi_h F_{UL}^{\sin \phi_h} + \varepsilon \sin(2\phi_h) F_{UL}^{\sin 2\phi_h} \right|$ $+ S_{\parallel} \lambda_{e} \left| \sqrt{1 - \varepsilon^{2}} F_{LL} + \sqrt{2 \varepsilon (1 - \varepsilon)} \cos \phi_{h} F_{LL}^{\cos \phi_{h}} \right|$ + $|\mathbf{S}_{\perp}| \sin(\phi_h - \phi_S) \left(F_{UT,T}^{\sin(\phi_h - \phi_S)} + \varepsilon F_{UT,L}^{\sin(\phi_h - \phi_S)} \right)$ $+ \varepsilon \sin(\phi_h + \phi_S) F_{UT}^{\sin(\phi_h + \phi_S)} + \varepsilon \sin(3\phi_h - \phi_S) F_{UT}^{\sin(3\phi_h - \phi_S)}$ $+ \sqrt{2 \varepsilon (1+\varepsilon)} \sin \phi_S F_{UT}^{\sin \phi_S} + \sqrt{2 \varepsilon (1+\varepsilon)} \sin (2\phi_h - \phi_S) F_{UT}^{\sin (2\phi_h - \phi_S)} \bigg|$ + $|\mathbf{S}_{\perp}|\lambda_{e} | \sqrt{1-\varepsilon^{2}} \cos(\phi_{h}-\phi_{S}) F_{LT}^{\cos(\phi_{h}-\phi_{S})} + \sqrt{2\varepsilon(1-\varepsilon)} \cos\phi_{S} F_{LT}^{\cos\phi_{S}}$ $+\sqrt{2\varepsilon(1-\varepsilon)}\cos(2\phi_h-\phi_S)F_{LT}^{\cos(2\phi_h-\phi_S)}\bigg]\bigg\}$

The aim of the experiment is to study the Boer-Mulders distribution functions, the Collins function and the Cahn effect, by measuring three terms of the cross section with unpolarized and longitudinally polarized beams, and with unpolarized H and D targets.

$$\begin{split} F_{UU}^{\cos\phi_h} &= \frac{2M}{Q} \, \mathcal{C} \left[-\frac{\hat{\boldsymbol{h}} \cdot \boldsymbol{k}_T}{M_h} \left(xh \, H_1^{\perp} + \frac{M_h}{M} \, f_1 \frac{\tilde{D}^{\perp}}{z} \right) - \frac{\hat{\boldsymbol{h}} \cdot \boldsymbol{p}_T}{M} \left(xf^{\perp} D_1 + \frac{M_h}{M} \, h_1^{\perp} \frac{\tilde{H}}{z} \right) \right] \\ F_{UU}^{\cos 2\phi_h} &= \mathcal{C} \left[-\frac{2 \left(\hat{\boldsymbol{h}} \cdot \boldsymbol{k}_T \right) \left(\hat{\boldsymbol{h}} \cdot \boldsymbol{p}_T \right) - \boldsymbol{k}_T \cdot \boldsymbol{p}_T}{MM_h} h_1^{\perp} H_1^{\perp} \right], \\ F_{LU}^{\sin\phi_h} &= \frac{2M}{Q} \, \mathcal{C} \left[-\frac{\hat{\boldsymbol{h}} \cdot \boldsymbol{k}_T}{M_h} \left(xe \, H_1^{\perp} + \frac{M_h}{M} \, f_1 \frac{\tilde{G}^{\perp}}{z} \right) + \frac{\hat{\boldsymbol{h}} \cdot \boldsymbol{p}_T}{M} \left(xg^{\perp} D_1 + \frac{M_h}{M} \, h_1^{\perp} \frac{\tilde{E}}{z} \right) \right], \end{split}$$

Where h_1^{\perp} is the Boer-Mulders function, H_1^{\perp} is the Collins function. The Cahn effect is related to the collinearity of quark process i.e. intrinsic transverse momentum.

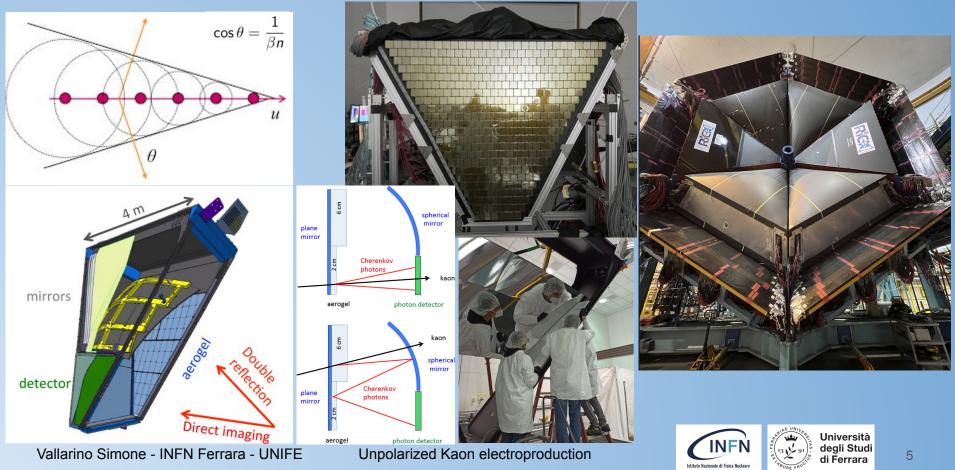


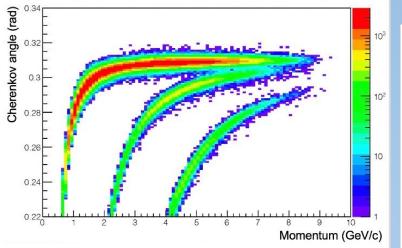
Universit degli Stu di Ferrar

Vallarino Simone - INFN Ferrara - UNIFE

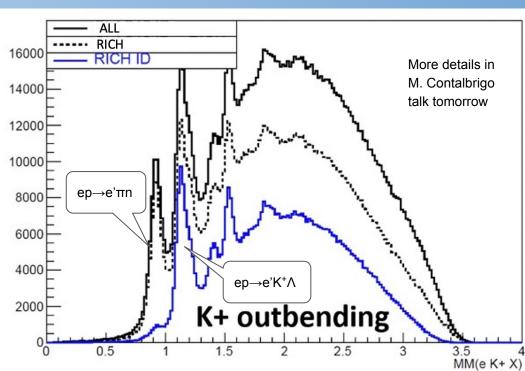
CLAS12 configuration

- Unpolarized targets of hydrogen or deuterium
- 11 GeV beam
- Toroidal magnetic field 2T (forward) and solenoid 5T (recoil).
- Standard production system, data acquisition and online monitoring
- The HTCC, LTCC and TOF system provides a good separation:
 - $\circ ~~\pi/K$ up to 3 GeV/c
 - K/p in 2.5-5 GeV/c momentum range
- In the 3-8 GeV/c it is not possible to well separate $\pi/K/p$ then an extension in PID momentum range is needed
- Two modules of Ring Imaging Cherenkov has been installed in sector 1 and 4 of the CLAS12 detector (completed in June 22)



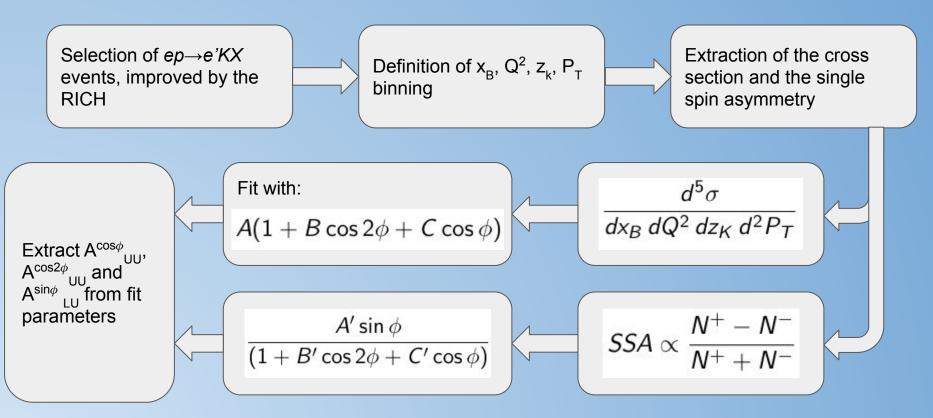

Università degli Studi di Ferrara

Vallarino Simone - INFN Ferrara - UNIFE


The CLAS12 Ring Imaging Cherenkov

RICH preliminary performance

Left: hadron separation provided by RICH Right: check with semi-inclusive channel $ep \rightarrow e'H^+X$



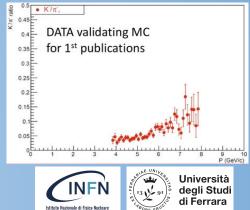
Università degli Studi di Ferrara

Vallarino Simone - INFN Ferrara - UNIFE

Data analysis

Vallarino Simone - INFN Ferrara - UNIFE

Unpolarized Kaon electroproduction



7

Expected statistical and systematic errors

- The expected systematic errors have been evaluated using a fast Monte Carlo simulation of inclusive and semi-inclusive DIS with CLAS12 acceptance folded in.
- This SSA measurement is rather insensitive to uncertainties in acceptance and charge normalization
- Other sources include the longitudinal to transverse photo absorption cross section ratio and the beam polarization (for the $\sin\phi$ term)
- A source of systematic error is the possible contamination of single K sample with K from decays of exclusive K* meson
- The statistics for K is one order of magnitude less than π, as well as evaluated with MC and confirmed by the first data.
- To reduce the statistic errors the request is 54 beam days plus 2 commissioning days.

Item	$A_{UU}^{\cos 2\phi}$	$A_{UU}^{\cos\phi}$	$A_{LU}^{\sin\phi}$
beam polarization	-	-	3%
acceptance corrections	4%	4%	2%
radiative corrections	3%	3%	3%
fitting procedure	4%	4%	3%

Vallarino Simone - INFN Ferrara - UNIFE

Expected results

- This experiment will simultaneously collect SIDIS data with π and K using H and D targets.
- The extraction of $\cos\phi$, $\cos 2\phi$ and $\sin\phi$ moments will provide information on Boer-Mulders function, the Collins function and the Cahn effect.
- The measurements for charged K with two targets, combined with π measurement, will allow the extraction of Collins analyzing power ratios, providing information about the polarized FFs and flavor sensitivity of PDFs.
- The measurements of azimuthal asymmetries will provide coinstains on the TMDs and will allow more precise test of factorization and the investigation of the Q² dependence, enabling to study the leading-twist and higher-twist nature of the corresponding observables.
- The measurement of the P_T dependence of Boer-Mulders asymmetry will allow to check of high P_T predictions and study transition from non-perturbative to perturbative regime.
- Combining analysis of CLAS12 data and HERMES measurement in high Q² domain will provide information on the Boer-Mulders function, that allows to study correlations between transverse spin and transverse momenta of quarks.

My role in this analysis

- Since november 2020 I am working with the CLAS12 RICH group, in particular I was involved in the second module assembling, installation and commissioning.
- I just started to study SIDIS and the SSA
- I will start to analyze the CLAS12 data looking for the Single Spin Asymmetry and extracting the $A^{\sin\phi}_{LU}$ term.

$$SSA \propto rac{N^+ - N^-}{N^+ + N^-}$$

- The analysis will be performed on Run Group B data, which acquired ~43B triggers between 2019 and 2020. Also run group A data will be used to compare results from the two different targets.
- If possible I will go deep in this analysis and trying to extract the $A^{\cos\phi}_{UU}$, $A^{\cos2\phi}_{UU}$ terms.
- At the end of 2023 I will conclude my PhD with a thesis on RICH and its use on physics analysis like this one.

Thank you for your kindly attention

Vallarino Simone - INFN Ferrara - UNIFE

Unpolarized Kaon electroproduction

Università degli Studi di Ferrara

References

- [CLAS12 PAC 34 proposal] <u>Studies of the Boer-Mulders Asymmetry in Kaon</u> <u>Electroproduction with Hydrogen and Deuterium Targets</u>
- [Bacchetta et Al] <u>Semi-inclusive deep inelastic scattering at small</u> <u>transverse momentum</u>

Vallarino Simone - INFN Ferrara - UNIFE

