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The Proton and its Excitations

People have always been fascinated by that are hidden from 
their view and by what might be found inside objects
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The Proton as a Hard Sphere Scattering Center

p

[Lawrence Berkeley Laboratory]

In a bubble chamber elastic proton scattering on hydrogen 
resembles “billiards kinematics”

Proton as an invisible scattering center

▪ Billiard balls are hard spheres of equal 
masses colliding with each other

▪ One important principle of pool: when 
one ball strikes another without spin, the 
two balls will always separate at 90°

▪ This principle is a direct result of 
energy and momentum conservation

▪ Spherical objects have smallest 
surface-to-volume ratio of any three-
dimensional form: a spherical shape 
minimizes potential energy

▪ Many objects in nature have a spherical 
shape, for example planets, stars, 
bubbles, and water drops
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The Proton as Probed By Electrons

Coulomb scattering of slow & light on heavy particles …
▪ … produces a characteristic angular distribution

  (classical for point- 
  charge, zero-spin)

▪ Deviations from above formular provide information on size and shape
▪ The differential cross section is a tool to study scattering centers

Inferring the spatial structure of protons from the diffraction pattern of scattered electrons
▪ With de Broglie wavelengths comparable to size of the proton (about 200 MeV/c momentum)
▪ Observing deviations from the point-charge, zero-spin Mott differential cross section:
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In a magnetic spectrometer elastic electron scattering on hydrogen 
revealed proton radius in 1954

[R. Hofstadter, Phys. Rev. 102 (1956)]

The Proton as a Structured Scattering Center

In electron scattering …
▪  Electron vertex is 
well‐known from QED
▪ One‐photon exchange 
is %-level accurate
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Proton Factor Factors

The mean squared radius is determined from the 
slope of the corresponding form factor at Q2 = 0
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The Proton Radius Puzzle
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• Charged pion beams revealed a 
   proton resonance as early as 1954 
  (and established charge independence)

• Electron scattering on protons revealed
   three resonance regions in the 1970s

[Stein et al., Phys. Rev. D 12 (1975)]

Excitation of Proton Resonances

Virtuality of photon:

[Yuan, Rochester Conference (1954)]

Inelasticity of process:

Mass of excited proton:

𝑥 =
𝑄2

2𝑝𝑞
= 𝑄2/(2𝑀𝜈)

2
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The Virtue of Electro- (and Photo-) Excitations

Clean process with electromagnetic vertex well known from QED

Study of many relevant observables:

– Excitation spectrum / quantum numbers

– Selective and exclusive reactions
   Single-pion production
   as an example:

– Transitions amplitudes and Q2 evolutions

– Polarization observables:

Light baryon spectroscopy by meson-
production reactions at electron accelerators

[Thiel, Afzal, Wunderlich, Prog. Part. Nucl. Phys. 125, 103949 (2022)]
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Separation of Cross Sections Into Structure Functions

Five-fold differential cross section separates in virtual photon flux and virtual photoproduction

Degree-of-polarization of photon:
Helicity of incoming electron:            h       

[E. Amaldi, S. Fubini, and G. Furlan, Pion-Electroproduction (1979)]
[A. Donnachie & G. Shaw, Electromagnetic Interactions of Hadrons (1978)]

Single-kaon production
 as an example:
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Connecting to Electrocoupling Amplitudes

Cross sections of resonance r of mass Mr and width Γtot(Mr) = Γr and spin Jr:

with the following kinematic definitions:

The electromagnetic decay widths at the resonance point W=Mr are given by:
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Connection to Strong QCD Regime

Standard Model as diverges as Q2 approaches zero and QCD becomes non-perturbative

Frank Wilczek, Physics Today, August 2000

external M-B cloud in 
addition to quark core

(Q2 < 2 GeV2) (Q2 > 5 GeV2)

quark core dominates; transition from 
confinement to pQCD regimes

3q core + M-B cloud      3q core           pQCD

low Q2                                  high Q2

▪ Confinement and meson-baryon (MB) 
cloud play key role!

▪ N* degrees of freedom?
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The Excited Nucleon Structure

e
e’

γv 

N B

N*,△*

A1/2, A3/2, S1/2 
helicity amplitudes

M

Q2

N* structure is more complex than what can be described accounting for quarks only

▪ Study of exclusive reaction channels over a broad kinematic range:
       πN, ωN, φN, ƞN, ƞ’N, ππN, KY, K*Y, KY*

▪ Studies of electrocouplings from low to high Q2 probe N* structure
▪ Momentum dependence of underlying degrees of freedom shapes 

structure of N* states and Q2 evolution of electrocouplings
▪ Only source of information on many facets of non-perturbative strong 

interaction in generation of N* states and emergence from QCD
A1/2 , A3/2 – transverse

S1/2 - longitudinal

L = angular momentum state
I  = isospin of resonance x 2
J = total spin of resonance x 2

LIJ (mass)

Goal is to explore the spectrum and structure of N* states
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Mass scale for 3 dressed quarks inside proton is 
consistent with observed N/N* masses
The pion as q-q system should have 2/3 MN

The lightest hyperon ≈ 20% above nucleon mass 

▪ Probing EHM in a regime where sum of dressed 
quark masses is dominant contribution to physical 
resonance mass

▪ Studies of different π vs. K structure are critical to 
test separation of emergent and Higgs mechanisms 

▪ Consistency on momentum evolution of dressed 
quark mass function of importance for validation of 
insight into EHM

Courtesy of 
C.D. Roberts

confinement regime: constituent quark mass

Momentum (k), GeV

approaching bare 
Higgs mechanism 

mass 

dressed 
quark

bare quark

dressing kernel

M=M(p) m0=mHM

Dressed quark mass depends 
on its momentum

Dressed
        gluons

Dressed 
         quarks

Continuum Schwinger Method

Why is ms/mu,d current quark mass ≈ 30?

Why is 1 GeV proton mass paired with 1/7 GeV 
pion mass in the same theory of Nature?

Emergence of Hadron Mass



CLAS12 for Jefferson Lab Experimental Hall B

Good Physics Needs Good Tools
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Solenoid & 
Central 

Detector

Torus & 
Forward 
Detector

Design Model of The CLAS12 Spectrometer
Beam

▪ 85% longitudinally pol. electrons
▪ Max. luminosity: 1035 s-1cm-2

▪ Energies: up to ~ 10.6 GeV

Targets (org. by Run Groups)
▪ Proton (RG-A/K)
▪ Deuteron (RG-B)
▪ Nuclei (RG-M/D/E)
▪ Long. pol. NH3/ND3 (RG-C)

[V.D. Burkert et al., Nucl. Inst. and Meth. A 959, 163419 (2020)]

Ideal instrument to study exclusive meson electroproduction 
in the nucleon resonance region 

Magnetic Field
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Subsystems of the CLAS12 Spectrometer

Beamline
Target
Central Vertex Tracker
Central Time of Flight
Central Neutron Det.
Back-Angle Neutron Det.

C
E
N
T
R
A
L

High Threshold Cherenkov 
Forward Tagger
Drift Chambers

Low Threshold Cherenkov
Ring Imaging Cherenkov

Forward Time of Flight
EM Calorimeter

F
O
R
W
A
R
D
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Side View Photograph of CLAS12 Spectrometer

Central 
Detector

Forward 
Detector

1m

Electron 
beam
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CLAS12 Subsystems During Installation
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Hall B Experimental Setup 2022–23

Longitudinally polarized cryo-target inside solenoid
Multiple configurations: NH3, ND3, C, CH2, CD2, …

Forward Tagger
and Møller shield

Additional 2nd sector RICH
coverage with 50,048 channels

< ~ 80% H polarization
< ~ 45% D polarization
DNP by 140 GHz µwaves 
1 K with ℓHe refrigerator

Proton Deuteron

Installation in Hall B, June 2022

Testing in Target Lab, March 2022 Rapid exchange of target samples

Thermoluminescence of target material
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Unpolarized Cryo-Target for Runs in 2023+
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Event Reconstruction in CLAS12

π0→γγ 
reconstruction 
from Forward 
Calorimeter
σ~11.5 MeV

π0→γγ 
reconstruction 
from Forward 
Tagger
σ~4.7 MeV

Forward Calorimeter
sampling fraction for electrons

TOF particle 
identification

π+

K+

p

Forward Central

Angular 
coverage

5o – 35o 35o – 135o

Momentum
resolution

dp/p < 1% dp/p < 5%

θ resolution 1 mrad 5 – 10 mrad

φ resolution 1 mrad/sinθ 5 mrad/sinθ

RICH particle 
identification
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Examples of mass spectra 
at four different beam energies

Exclusive and Inclusive Processes

Note: Inclusive ep → e’X spectrum is sum over all exclusive channels

Examples of missing mass spectra 
in 𝑒𝑝 → 𝑒′𝜋+𝑋 at the same energies

Elastic peak and first 3 N* states, 
𝛥(1232), 𝑁(1520), and 𝑁(1680), visible

Sharp peak of undetected neutron, 
peak of 𝛥0(1232), and indications of 
higher excitations visible
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CLAS12 Kinematic Reach

Beam energy at 10.6 GeV, Torus current 3770 A, electrons in-bending,  Solenoid magnet at 2416 A

e’ 
minimum 
energy 
threshold 

p(e,e’)X
Θmax

Plots based on 200 min. of data taking

2

Q
2 

(G
eV

2 )

Q
2 

(G
eV

2 )

HTCC hit
+

ECAL cluster
+

DC track
+

TOF hit

Electron ID



CLAS (But not CLAS12) Results
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CLAS N* Program Measurement Overview

CLAS: 1997 - 2012
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Overview of Extractions of Electrocouplings

e

e’
γv 

N N

N*,△*

p

Q2

Reaction
Channel N*, Δ* States Q2 ranges of gvpN*

Electrocouplings (GeV2)
p0p, p+n Δ(1232)3/2+

N(1440)1/2+, N(1520)3/2-, N(1535)1/2-

0.16 – 6.0
0.30 – 4.16

p+n N(1675)5/2, N(1680)5/2+, N(1710)1/2+ 1.6 – 4.5
hp N(1535)1/2- 0.2 – 2.9

p+p-p N(1440)1/2+, N(1520)3/2-

Δ(1620)1/2-, N(1650)1/2-, N(1680)5/2+, 
Δ(1700)3/2-, N(1720)3/2+, N’(1720)3/2+

0.25 – 1.5
0.5 – 1.5

Analysis codes employed for extractions:
▪ Unitary Isobar Model (UIM)
▪ Fixed-t dispersion relations (DR)
▪ Data-driven reaction model for π+π-N (JM09, JM16, JM19)

Aznauryan et al., Int. J. Mod. Phys. E 22, 1330015 (2013)
Mokeev, FBS 57, 909 (2016); Mokeev and Carman, FBS 63, 59 (2022)

for πN and ƞN}
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[I.G. Aznauryan et al., Phys. Rev. C 80, 055203 (2009)]
Good agreement between UIM and DR approaches

Q2 = 0.4 GeV2         0.75              1.45               3.0                 4.2                 5.0

W = 1.232 GeV
γ*p → π0p

LC RQM

MB (inferred)

CLAS N* Electrocouplings  – First Resonance Region
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QCD calculations 
compatible with data 
where meson cloud 

does not contaminate 
evolution Q2 ≤ 2 GeV2 
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CLAS N* Electrocouplings – Second Resonance Region

Electrocouplings reveal different interplay between meson-baryon cloud and quark core

Good agreement of the extracted N* electrocouplings from Nπ and Nππ:

- Compelling evidence for reliability of results

- Different channels have very different mechanisms for non-resonant background

N(1440)1/2+

Q2 (GeV2)
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60
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20

0

-20

-40

-60

-80
0                 1                 2                  3                 4                 5

A 1
/2

*1
00

0 
(G
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/2
)

N(1520)3/2-

Q2 (GeV2)[V.D. Burkert, Few-Body Syst. 57, 873 (2016)]

40

20
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-60

-80

-100

-120
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A 1
/2

*1
00

0 
(G
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-1

/2
)

γ*p → pπ
γ*p → pππ

Need for data on the electrocouplings over broad range of Q2
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[Mokeev, Aznauryan, IJMPC 26, 1460080 (2014);   Mokeev et al., PRC 93, 025206 (2016);   Carman, Joo, Mokeev, FBS 61, 29 (2020)]

Nππ channel gave first electrocoupling results on higher-lying states up to 1.8 GeV

Most high-lying N* states decay mainly to Nππ with much smaller strength to Nπ

Δ(1620)1/2- Δ(1700)3/2- N(1720)3/2+

1.46-1.56 GeV
1.56-1.66 GeV
1.61-1.71 GeV

1.61-1.71 GeV
1.66-1.76 GeV
1.71-1.81 GeV

1.61-1.71 GeV
1.66-1.76 GeV
1.71-1.81 GeV

S 1
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*1
00

0 
(G

eV
-1

/2
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/2

*1
00

0 
(G

eV
-1

/2
)

A 3
/2

*1
00

0 
(G

eV
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/2
)

CLAS N* Electrocouplings  – Third Resonance Region

γ*p → pππ
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JLab-Moscow Reaction Model (JM)

[V.I. Mokeev et al., Phys. Rev. C 86, 035203 (2012)]

JM model provides reasonable description of data for extraction of resonance electrocouplings

Description of pπ+π- Data by a Reaction Model
5-fold differential cross section 𝑑

5𝜎

𝑑5𝜏
 , where the denominator consists of 

differentials for the five variables that define the final state kinematics
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BR(pD), % BR(rp), %

electroproduction 64-100 <5

photoproduction 14-60 19-69

N(1720)3/2+ hadronic decays from CLAS 
data fit with only conventional N* states 

▪ N(1720)3/2+ decays to pD 
and rp deduced from gp and 
gvp data were contradictory

▪ Impossible to describe data 
with conventional N* states 

Resonance BR(pD), % BR(rp), %

N’(1720)3/2+ 

electroproduction
photoproduction

47-64
46-62

3-10
4-13

N(1720)3/2+ 

electroproduction
photoproduction

39-55
38-53

23-49
31-46

Δ(1700)3/2-

electroproduction
photoproduction

77-95
78-93

3-5
3-6

N* hadronic decays from CLAS data fit that  
incorporates new N’(1720)3/2+ state

▪ Good description of both gp 
and gvp data achieved by 
including new N’(1720)3/2+

⇒ Both, photo- and electroproduction data are essential 
for a full understanding of the N* spectrum

[V.I. Mokeev et al., Phys. Lett. B 805, 135457 (2020)]

ep → e′pp+p-

N’(1720)3/2+

N(1720)3/2+

A New N′(1720) State from Nππ Analysis

W (GeV)

s
 (

b)
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[D.S. Carman, R.W. Gothe, V.I. Mokeev, and C.D. Roberts, Particles 6, 416 (2023)]
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Continuum Schwinger 
Method (CSM) Theory

Nucleon Resonance Electroexcitation Amplitudes

▪ Important evidence for the different internal structures of nucleon resonances
▪ Insight into strong interaction dynamics underlying Emergence of Hadron Mass
▪ Data compared to Continuum Schwinger Method with momentum-dependent quark masses

Satisfactory description for ∆(1232)3/2+, N(1440)1/2+, ∆(1600)3/2+ Continuum QCD predictions:
[Y. Lu et al., Phys. Rev. D 100, 034001 (2019)]
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CLAS12 N* Program 

▪ Measure exclusive electroproduction of Nπ, Nƞ, Nππ, KY final states from 
unpolarized proton target with longitudinally polarized electron beam

E = 6.6, 8.8, 11 GeV, Q2 = 0.05 → 12 GeV2, W → 3.0 GeV, cos θ = [-1:1]

E12-09-003 Nucleon Resonance Studies with CLAS12
E12-06-108A KY Electroproduction with CLAS12
E12-16-010A N* Studies Via KY Electroproduction at 6.6 and 8.8 GeV
E12-16-010 A Search for Hybrid Baryons in Hall B with CLAS12

RG-A

Spr. 18 
126 mC

10.2 GeV,
10.6 GeV

Fall 18 
99 mC

Spr. 19 
58 mC

RG-K Fall 18 
28 mC

6.5 GeV, 
7.5 GeV

50% of total

10% of total

continuing in Winter 23

Probing N* structure is very complex and relates to fundamental QCD phenomena
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Concluding Remarks on the CLAS N* Program

Study of N* states is one of the key foundations of the CLAS physics program
▪ CLAS has provided a huge amount of data up to Q2 ~ 5 GeV2 

▪ Electrocouplings of most N* states < 1.8 GeV have been extracted for the first time

CLAS12 will extend these studies to 0.05 < Q2 < 12 GeV2 and W < 2.4 GeV 
▪ Exclusive electroproduction of Nπ, Nƞ, Nππ, KY reactions from 

unpolarized proton target with longitudinally polarized electron beam

▪ Data will provide access to higher-lying N* states

▪ Goal is the understanding of active degrees of freedom 
that account for N* structure vs. distance scale
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Where Do We Stand in Deciphering Nature?

Emergence of mass, Gluon & quark 
dressing, Running couplings …

One-photon approximation, 
Effective models …

[Gross et al, Eur. Phys. J. C 83,1125 (2023)]

Hot QCD, Age of Universe ~10 μs …

Resonances are sufficiently complex to reveal hidden 
QCD and early Universe phenomena, but not so complex 

that fundamental theories are bound to fail
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