Study of Nucleon Resonance Electroexcitations at Jefferson Lab

Patrick Achenbach (Jefferson Lab)

*With credits to* Daniel Carman, Ralf Gothe, and Victor Mokeev

Oct 2o23

#### People have always been fascinated by that are hidden from their view and by what might be found inside objects



## The Proton as a Hard Sphere Scattering Center

[Lawrence Berkeley Laboratory]



In a bubble chamber *elastic proton scattering* on hydrogen resembles "billiards kinematics"

#### Proton as an invisible scattering center

- Billiard balls are hard spheres of equal masses colliding with each other
- One important principle of pool: when one ball strikes another without spin, the two balls will always separate at 90°
- This principle is a direct result of energy and momentum conservation
- Spherical objects have smallest surface-to-volume ratio of any threedimensional form: a spherical shape minimizes potential energy
- Many objects in nature have a spherical shape, for example planets, stars, bubbles, and water drops

### The Proton as Probed By Electrons



Coulomb scattering of *slow & light on heavy* particles ...

• ... produces a characteristic angular distribution

$$\left(\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}\right)_{R_{u}} = \left(\frac{1}{4\pi\varepsilon_{0}}\frac{Z_{1}Z_{2}e^{2}}{4E}\right)^{2}\frac{1}{\sin^{4}\left(\frac{\theta}{2}\right)}\frac{E'}{E} \quad \text{(classical for point-charge, zero-spin)}$$

Deviations from above formular provide *information on size and shape*The differential cross section is a tool to study scattering centers

Inferring the spatial structure of protons from the diffraction pattern of scattered electrons • With *de Broglie wavelengths* comparable to size of the proton (about 200 MeV/c momentum) • Observing *deviations* from the point-charge, zero-spin Mott differential cross section:  $\left(\frac{d\sigma}{d\Omega}\right)_{Mett}^{*} = \left(\frac{d\sigma}{d\Omega}\right)_{Putherford} \cdot \cos^{2}\frac{\theta}{2} = \frac{4Z^{2}\alpha^{2}(\hbar c)^{2}E'^{2}}{|qc|^{4}}\cos^{2}\frac{\theta}{2}$ 

## The Proton as a Structured Scattering Center



Ze

 $p_e = (E_e, \vec{p_e})$  for the incident electron.  $p'_e = (E'_e, \vec{p'}_e)$  for the scattered electron.  $p_p = (m_p, \vec{0})$  for the proton target.

In electron scattering ...

- Electron vertex is well-known from QED
- One-photon exchange is %-level accurate



In a magnetic spectrometer *elastic electron scattering* on hydrogen revealed proton radius in 1954

#### **Proton Factor Factors**

#### The cross section:

$$\frac{\left(\frac{d\sigma}{d\Omega}\right)}{\left(\frac{d\sigma}{d\Omega}\right)_{Mott}} = \frac{1}{\varepsilon \left(1 + \tau\right)} \left[ \varepsilon G_E^2 \left(Q^2\right) + \tau G_M^2 \left(Q^2\right) \right]$$

with:

$$\tau = rac{Q^2}{4m_p^2}, \quad arepsilon = \left(1 + 2\left(1 + au
ight) \tan^2 rac{ heta_e}{2}
ight)^{-1}$$

Fourier-transform of  $G_E$ ,  $G_M \rightarrow$  spatial distribution (Breit frame)

$$\left\langle r_E^2 \right\rangle = -6\hbar^2 \left. \frac{\mathrm{d}G_E}{\mathrm{d}Q^2} \right|_{Q^2 = 0} \quad \left\langle r_M^2 \right\rangle = -6\hbar^2 \left. \frac{\mathrm{d}\left(G_M/\mu_p\right)}{\mathrm{d}Q^2} \right|_{Q^2 = 0}$$

The mean squared radius is determined from the slope of the corresponding form factor at  $Q^2 = 0$ 



#### **Excitation of Proton Resonances**





- Charged *pion beams* revealed a proton resonance as early as 1954 (and established charge independence)
- *Electron scattering* on protons revealed **three resonance regions** in the 1970s

# The Virtue of Electro- (and Photo-) Excitations

Clean process with electromagnetic vertex well known from QED



Light baryon spectroscopy by mesonproduction reactions at electron accelerators Study of many relevant observables:

- Excitation spectrum / quantum numbers
- Selective and exclusive reactions Single-pion production  $\gamma^{\gamma^*}$ as an example:
- Transitions amplitudes and Q<sup>2</sup> evolutions
- Polarization observables:

| Beam            |            | Target |                  | Recoil |          | Target + Recoil |          |          |          |          |    |            |    |          |          |          |
|-----------------|------------|--------|------------------|--------|----------|-----------------|----------|----------|----------|----------|----|------------|----|----------|----------|----------|
|                 | -          | -      | -                | -      | x'       | y'              | z'       | x'       | x'       | x'       | y' | y'         | y' | z'       | z'       | z'       |
|                 | -          | x      | $\boldsymbol{y}$ | z      | -        | -               | -        | x        | ${m y}$  | z        | x  | y          | z  | x        | y        | z        |
|                 |            |        |                  |        |          |                 |          |          |          |          |    |            |    |          |          |          |
| unpolarized     | $\sigma_0$ |        | T                |        |          | P               |          | $T_{x'}$ |          | $L_{x'}$ |    | $\Sigma$   |    | $T_{z'}$ |          | $L_{z'}$ |
|                 | 5          |        | P                | a      |          | m               | 0        | r        | ~        | æ        | -  |            | -  | Ŧ        | a        | æ        |
| linearly pol.   | $\Sigma$   | H      | Ρ                | G      | $O_{x'}$ | T'              | $O_{z'}$ | $L_{z'}$ | $C_{z'}$ | $T_{z'}$ | E  | $\sigma_0$ | F' | $L_{x'}$ | $C_{x'}$ | $T_{x'}$ |
|                 |            |        |                  | П      | a        |                 | a        |          | 0        |          | a  |            | 77 |          | 0        |          |
| circularly pol. |            | F      |                  | E      | $C_{x'}$ |                 | $C_{z'}$ |          | $O_{z'}$ |          | G  |            | H  |          | $O_{x'}$ |          |

## **Separation of Cross Sections Into Structure Functions**

Five-fold differential cross section separates in virtual photon flux and virtual photoproduction



Cross sections of resonance *r* of mass  $M_r$  and width  $\Gamma_{tot}(M_r) = \Gamma_r$  and spin  $J_r$ :

$$\sigma_{L,T}^{r}(W,Q^{2}) = \frac{\pi}{q_{\gamma}^{2}} \sum_{N^{*},\Delta^{*}} (2J_{r}+1) \frac{M_{r}^{2}\Gamma_{tot}(W)\Gamma_{\gamma}^{L,T}(M_{r})}{(M_{r}^{2}-W^{2})^{2} + M_{r}^{2}\Gamma_{tot}^{2}(W)} \frac{q_{\gamma}}{K}$$

with the following kinematic definitions:

$$q_{\gamma} = \sqrt{Q^2 + E_{\gamma}^2}, \quad E_{\gamma} = \frac{W^2 - Q^2 - M_N^2}{2W}, \quad K = \frac{W^2 - M_N^2}{2W}$$

The electromagnetic decay widths at the resonance point  $W=M_r$  are given by:

$$\Gamma_{\gamma}^{L}(M_{r},Q^{2}) = 2\frac{q_{\gamma,r}^{2}(Q^{2})}{\pi} \frac{2M_{N}}{(2J_{r}+1)M_{r}} |S_{1/2}(Q^{2})|^{2}$$
  
$$\Gamma_{\gamma}^{T}(M_{r},Q^{2}) = \frac{q_{\gamma,r}^{2}(Q^{2})}{\pi} \frac{2M_{N}}{(2J_{r}+1)M_{r}} (|A_{1/2}(Q^{2})|^{2} + |A_{3/2}(Q^{2})|^{2})$$

### Connection to Strong QCD Regime



#### The Excited Nucleon Structure

N\* structure is more complex than what can be described accounting for quarks only

- Study of exclusive reaction channels over a broad kinematic range: πN, ωN, φN, ηN, η'N, ππN, KY, K\*Y, KY\*
- Studies of electrocouplings from low to high Q<sup>2</sup> probe N\* structure
- Momentum dependence of underlying degrees of freedom shapes structure of N\* states and Q<sup>2</sup> evolution of electrocouplings
- Only source of information on many facets of non-perturbative strong interaction in generation of N\* states and emergence from QCD

Goal is to explore the *spectrum* and *structure* of N\* states



#### L = angular momentum state $L_{IJ}$ (mass) I = isospin of resonance x 2

J = total spin of resonance x 2

#### **Emergence of Hadron Mass**

Mass scale for 3 dressed quarks inside proton is consistent with observed N/N\* masses The pion as q=q system should have  $2/3 M_N$ 

Why is 1 GeV proton mass paired with 1/7 GeV pion mass in the same theory of Nature?

The lightest hyperon ≈ 20% above nucleon mass

Why is  $m_s/m_{u,d}$  current quark mass  $\approx 30$ ?

- Probing EHM in a regime where sum of dressed quark masses is dominant contribution to physical resonance mass
- Studies of different π vs. K structure are critical to test separation of emergent and Higgs mechanisms
- Consistency on momentum evolution of dressed quark mass function of importance for validation of insight into EHM



# CLAS12 for Jefferson Lab Experimental Hall B

Good Physics Needs Good Tools



## Design Model of The CLAS12 Spectrometer

# Beam Torus & 85% longitudinally pol. electrons Forward Max. luminosity: 10<sup>35</sup> s<sup>-1</sup>cm<sup>-2</sup> Detecto Energies: up to ~ 10.6 GeV Solenoid & Central Detector beam

[V.D. Burkert et al., Nucl. Inst. and Meth. A 959, 163419 (2020)]

Ideal instrument to study exclusive meson electroproduction in the nucleon resonance region

#### Targets (org. by Run Groups)

- Proton (RG-A/K)
- Deuteron (RG-B)
- Nuclei (RG-M/D/E)
- Long. pol. NH<sub>3</sub>/ND<sub>3</sub> (RG-C)

#### Magnetic Field



# Subsystems of the CLAS12 Spectrometer

- C Beamline
- E Target
- N Central Vertex Tracker
- R Central Time of Flight
- A Central Neutron Det.
- Back-Angle Neutron Det.



High Threshold Cherenkov Forward Tagger Drift Chambers Low Threshold Cherenkov Ring Imaging Cherenkov Forward Time of Flight EM Calorimeter

F

0

R

W

Α

R

D



SVT

BMTZ

BMTC

## Side View Photograph of CLAS12 Spectrometer





#### Hall B Experimental Setup 2022–23

**Longitudinally polarized cryo-target** inside solenoid Multiple configurations: NH<sub>3</sub>, ND<sub>3</sub>, C, CH<sub>2</sub>, CD<sub>2</sub>, ...



Thermoluminescence of target material



Testing in Target Lab, March 2022

|                  | Proton       | Deute                                                                                            | eron |
|------------------|--------------|--------------------------------------------------------------------------------------------------|------|
|                  | Polarization | Polarization                                                                                     |      |
| ,                | 78.87%       | 47.1                                                                                             | L7%  |
| 10 H             | Signal Area  | ्र<br>Signal Area                                                                                |      |
| () Abuarbasy ave | -0.485024    | ()<br>Automotion ()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>( | 0473 |



Installation in Hall B, June 2022



Rapid exchange of target samples

< ~ 80% H polarization < ~ 45% D polarization DNP by 140 GHz µwaves 1 K with {He refrigerator Forward Tagger and Møller shield



Additional 2<sup>nd</sup> sector **RICH** coverage with 50,048 channels







# Unpolarized Cryo-Target for Runs in 2023+



#### **Event Reconstruction in CLAS12**



#### **Exclusive and Inclusive Processes**

Note: Inclusive  $ep \rightarrow e'X$  spectrum is sum over all exclusive channels



Examples of mass spectra at four different beam energies

Elastic peak and first 3 N\* states,  $\Delta$ (1232), *N*(1520), and *N*(1680), visible

Examples of missing mass spectra in  $ep \rightarrow e'\pi^+X$  at the same energies

Sharp peak of undetected neutron, peak of  $\Delta^0(1232)$ , and indications of higher excitations visible

## **CLAS12 Kinematic Reach**

Beam energy at 10.6 GeV, Torus current 3770 A, electrons in-bending, Solenoid magnet at 2416 A



# CLAS (But not CLAS12) Results



# **CLAS N\* Program Measurement Overview**

| Reaction                            | Observable                                         | Q2 (GeV2)     | W (GeV)     | Reference               |
|-------------------------------------|----------------------------------------------------|---------------|-------------|-------------------------|
|                                     |                                                    | 0.4 - 1.0     | 1.3 - 1.825 | PRC 98, 025203 (2018)   |
|                                     | dơ/dM,                                             | 2.0 - 5.0     | 1.4 - 2.0   | PRC 96, 025209 (2017)   |
| ер> ерл <sup>+</sup> л <sup>-</sup> |                                                    | 0.25 - 0.60   | 1.34 - 1.56 | PRC 86, 035203 (2012)   |
| Sec. in Sec.                        | do/cos0, do/da                                     | 0.2 - 0.6     | 1.3 - 1.57  | PRC 79, 015204 (2009)   |
|                                     | · · · · · · · · · · · · · · · · · · ·              | 0.5 - 1.5     | 1.4 - 2.1   | PRL 91, 022002 (2003)   |
|                                     | GLT                                                | 0.4- 1.0      | 1.5 - 1.8   | PRC 105, L022201 (2022) |
|                                     | dσ/dΩ                                              | 0.4- 1.0      | 1.0 - 1.8   | PRL 101, 015208 (2020)  |
|                                     | At, Aet                                            | 1.0 - 6.0     | 1.1 - 3.0   | PRC 95, 035207 (2017)   |
|                                     | σ <sub>υ</sub> , σ <sub>ιτ</sub> , σ <sub>ττ</sub> | 1.0 - 4.6     | 2.0 - 3.0   | PRC 90, 025205 (2014)   |
|                                     | $\sigma_{U}, \sigma_{LT}, \sigma_{TT}$             | 2.0 - 4.5     | 1.08 - 1.16 | PRC 87, 045205 (2013)   |
| ер> ер <sup>0</sup>                 | do/dt                                              | 1.0 - 4.6     |             | PRL 109, 112001 (2012)  |
|                                     | dσ/dΩ                                              | 3.0 - 6.0     | 1.1 - 1.4   | PRL 97, 112003 (2006)   |
|                                     | At, Aet                                            | 0.187 - 0.77  | 1.1 - 1.7   | PRC 78, 045204 (2008)   |
|                                     | OLT:                                               | 0.4 - 0.65    | 1.34 - 1.46 | PRC 72, 058202 (2005)   |
|                                     | At, Aet                                            | 0.5 - 1.5     | 1.1 - 1.3   | PRC 68, 035202 (2003)   |
|                                     | σ <sub>υ</sub> , σ <sub>ιτ</sub> , σ <sub>ττ</sub> | 0.4 - 1.8     | 1.1 - 1.4   | PRL 88, 122001 (2002)   |
|                                     | At, Aet                                            | 1.0 - 6.0     | 1.1 - 3.0   | PRC 95, 035206 (2017)   |
|                                     | At, Aet                                            | 0.05 - 5.0    | 1.1 - 2.6   | PRC 94, 05520 (2016)    |
|                                     | At, Aet                                            | 0.0065 - 0.35 | 1.1 - 2.0   | PRC 94, 045207 (2016)   |
|                                     | συ, σιτ, σττ                                       | 1.8 - 4.5     | 1.6 - 2.0   | PRC 91, 045203 (2015)   |
| ep> enπ <sup>+</sup>                | do/dt                                              | 1.6 - 4.5     | 2.0 - 3.0   | EPJA 49, 16 (2013)      |
|                                     | σ <sub>LT</sub> .                                  | 0.4 - 0.65    | 1.1 - 1.3   | PRC 85, 035208 (2012)   |
|                                     | סט, סנד, סדד סנד                                   | 1.7 - 4.5     | 1.15 - 1.7  | PRC 77, 015208 (2008)   |
|                                     | σ <sub>υ</sub> , σ <sub>ιτ</sub> , σ <sub>ττ</sub> | 0.25 - 0.65   | 1.1 - 1.6   | PRC 73, 025204 (2006)   |
|                                     | σ <sub>LT</sub>                                    | 0.4 - 0.65    | 1.34 - 1.46 | PRC 72, 058202 (2005)   |
|                                     | σ <sub>U</sub> , σ <sub>LT</sub> , σ <sub>TT</sub> | 2.12 - 4.16   | 1.11 - 1.15 | PRC 70, 042201 (2004)   |
|                                     | Aet                                                | 0.35 - 1.5    | 1.12 - 1.72 | PRL 88, 082001 (2002)   |

| Reaction           | Observable                                                            | Q <sup>2</sup> (GeV <sup>2</sup> ) | W (GeV)     | Reference             |
|--------------------|-----------------------------------------------------------------------|------------------------------------|-------------|-----------------------|
| en> epπ¯           | A <sub>t</sub> , A <sub>et</sub>                                      | 0.05 - 5.0                         | 1.1 - 2.6   | PRC 94, 05520 (2016)  |
|                    | σ <sub>υ</sub> , σ <sub>LT</sub> , σ <sub>TT</sub>                    | 1.6 - 4.6                          | 2.0 - 3.0   | PRC 95, 035202 (2017) |
| <b>ер&gt; ер</b> ղ | σ <sub>U</sub> , σ <sub>LT</sub> , σ <sub>TT</sub>                    | 0.13 - 3.3                         | 1.5 - 2.3   | PRC 76, 015204 (2007) |
|                    | dσ/dΩ                                                                 | 0.25 -1.50                         | 1.5 - 1.86  | PRL 86, 1702 (2001)   |
|                    | P <sup>o</sup>                                                        | 0.8 - 3.2                          | 1.6 - 2.7   | PRC 90, 035202 (2014) |
|                    | σ <sub>υ</sub> , σ <sub>LT</sub> , σ <sub>TT</sub> , σ <sub>LT'</sub> | 1.4 - 3.9                          | 1.6 - 2.6   | PRC 87, 025204 (2013) |
|                    | P' <sub>x</sub> , P' <sub>z</sub>                                     | 0.7 - 5.4                          | 1.6 - 2.6   | PRC 79, 065205 (2009) |
| ер> еК'У           | $\sigma_{LT'}$                                                        | 0.65, 1.0                          | 1.6 - 2.05  | PRC 77, 065208 (2008) |
|                    | σ <sub>υ</sub> , σ <sub>LT</sub> , σ <sub>TT,</sub> σ <sub>LT'</sub>  | 0.5 - 2.8                          | 1.6 - 2.4   | PRC 75, 045203 (2007) |
|                    | P' <sub>x</sub> , P' <sub>z</sub>                                     | 0.3 - 1.5                          | 1.6 - 2.15  | PRL 90, 131804 (2003) |
| ер> ерш            | σ <sub>υ</sub> , σ <sub>LT</sub> , σ <sub>TT</sub>                    | 1.725 - 4.85                       | 1.85 - 2.77 | EPJA 24, 445 (2005)   |
|                    | σ <sub>U</sub>                                                        | 1.6 - 5.6                          | 1.8 - 2.8   | EPJA 39, 5 (2009)     |
| <b>eh&gt; eh</b> b | σ <sub>L</sub> /σ <sub>T</sub>                                        | 1.5 - 3.0                          | 1.85 - 2.2  | PLB 605, 256 (2005)   |
|                    | d₀/dt                                                                 | 1.4 - 3.8                          | 2.0 - 3.0   | PRC 78, 025210 (2008) |
| ер> ерф            | dơ/dt'                                                                | 0.7 - 2.2                          | 2.0 - 2.6   | PRC 63, 059901 (2001) |

CLAS: 1997 - 2012



Nucleon Resonance Electroexcitations at Jefferson Lab

### **Overview of Extractions of Electrocouplings**

| Reaction<br>Channel   | N*, Δ* States                                                                                                                                                 | Q <sup>2</sup> ranges of g <sub>v</sub> pN*<br>Electrocouplings (GeV <sup>2</sup> ) |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| π <sup>0</sup> p, π⁺n | Δ(1232)3/2+                                                                                                                                                   | 0.16 – 6.0                                                                          |
|                       | N(1440)1/2+, N(1520)3/2-, N(1535)1/2-                                                                                                                         | 0.30 – 4.16                                                                         |
| π⁺n                   | N(1675)5/2, N(1680)5/2+, N(1710)1/2+                                                                                                                          | 1.6 – 4.5                                                                           |
| ηp                    | N(1535)1/2-                                                                                                                                                   | 0.2 – 2.9                                                                           |
| π⁺π⁻p                 | N(1440)1/2+, N(1520)3/2-                                                                                                                                      | 0.25 – 1.5                                                                          |
|                       | Δ(1620)1/2 <sup>-</sup> , N(1650)1/2 <sup>-</sup> , N(1680)5/2 <sup>+</sup> ,<br>Δ(1700)3/2 <sup>-</sup> , N(1720)3/2 <sup>+</sup> , N'(1720)3/2 <sup>+</sup> | 0.5 – 1.5                                                                           |



Analysis codes employed for extractions:

for  $\pi N$  and  $\eta N$ 

- Unitary Isobar Model (UIM) Fixed-t dispersion relations (DR)
- Data-driven reaction model for  $\pi^+\pi^-N$  (JM09, JM16, JM19)

Aznauryan et al., Int. J. Mod. Phys. E 22, 1330015 (2013) Mokeev, FBS 57, 909 (2016); Mokeev and Carman, FBS 63, 59 (2022)

## CLAS N\* Electrocouplings – First Resonance Region



## CLAS N\* Electrocouplings – Second Resonance Region



#### Electrocouplings reveal different interplay between meson-baryon cloud and quark core

Good agreement of the extracted N\* electrocouplings from N $\pi$  and N $\pi\pi$ :

- Compelling evidence for reliability of results
- Different channels have very different mechanisms for non-resonant background

Need for data on the electrocouplings over broad range of  $Q^2$ 

 $\gamma^* p \to p \pi \pi$ 

Most high-lying N\* states decay mainly to N $\pi\pi$  with much smaller strength to N $\pi$ 



[Mokeev, Aznauryan, IJMPC 26, 1460080 (2014); Mokeev et al., PRC 93, 025206 (2016); Carman, Joo, Mokeev, FBS 61, 29 (2020)]

 $N\pi\pi$  channel gave first electrocoupling results on higher-lying states up to 1.8 GeV

#### Description of $p\pi^+\pi^-$ Data by a Reaction Model

5-fold differential cross section  $\frac{d^5\sigma}{d^5\tau}$ , where the denominator consists of differentials for the five variables that define the final state kinematics





JM model provides reasonable description of data for extraction of resonance electrocouplings

# A New N'(1720) State from Nππ Analysis

| N(1720)3/2 <sup>+</sup> hadronic decays from CLAS<br>data fit with only conventional N* states |           |                            |  |  |
|------------------------------------------------------------------------------------------------|-----------|----------------------------|--|--|
|                                                                                                | BR(πΔ), % | <b>BR(</b> ρ <b>p</b> ), % |  |  |
| electroproduction                                                                              | 64-100    | <5                         |  |  |
| photoproduction                                                                                | 14-60     | 19-69                      |  |  |

| N* hadronic decays from CLAS data fit that<br>incorporates new N'(1720)3/2 <sup>+</sup> state |                |                    |  |  |
|-----------------------------------------------------------------------------------------------|----------------|--------------------|--|--|
| Resonance                                                                                     | BR(πΔ), %      | BR(ρp), %          |  |  |
| N'(1720)3/2 <sup>+</sup><br>electroproduction<br>photoproduction                              | 47-64<br>46-62 | 3-10<br>4-13       |  |  |
| N(1720)3/2 <sup>+</sup><br>electroproduction<br>photoproduction                               | 39-55<br>38-53 | 23-49<br>31-46     |  |  |
| Δ(1700)3/2 <sup>-</sup><br>electroproduction<br>photoproduction                               | 77-95<br>78-93 | 3-5<br><b>3-</b> 6 |  |  |

N(1720)3/2<sup>+</sup> decays to πΔ and ρp deduced from γp and γ<sub>v</sub>p data were contradictory

Impossible to describe data with conventional N\* states

Good description of both  $\gamma p$ and  $\gamma_v p$  data achieved by including **new N'(1720)3/2**<sup>+</sup>



[V.I. Mokeev et al., Phys. Lett. B 805, 135457 (2020)]

⇒ Both, photo- and electroproduction data are essential for a full understanding of the N\* spectrum

## **Nucleon Resonance Electroexcitation Amplitudes**



- Important evidence for the different internal structures of nucleon resonances
- Insight into strong interaction dynamics underlying Emergence of Hadron Mass
- Data compared to Continuum Schwinger Method with momentum-dependent quark masses

#### CLAS12 N\* Program

 Measure exclusive electroproduction of Nπ, Nη, Nππ, KY final states from unpolarized proton target with longitudinally polarized electron beam

 $E = 6.6, 8.8, 11 \text{ GeV}, Q^2 = 0.05 \rightarrow 12 \text{ GeV}^2, W \rightarrow 3.0 \text{ GeV}, \cos \theta = [-1:1]$ 

| E12-09-003  | Nucleon Resonance Studies with CLAS12                  |
|-------------|--------------------------------------------------------|
| E12-06-108A | KY Electroproduction with CLAS12                       |
| E12-16-010A | N* Studies Via KY Electroproduction at 6.6 and 8.8 GeV |
| E12-16-010  | A Search for Hybrid Baryons in Hall B with CLAS12      |



Probing N\* structure is very complex and relates to fundamental QCD phenomena

## Concluding Remarks on the CLAS N\* Program

#### Study of N\* states is one of the key foundations of the CLAS physics program

- CLAS has provided a huge amount of data up to  $Q^2 \sim 5 \text{ GeV}^2$
- Electrocouplings of most N\* states < 1.8 GeV have been extracted for the first time</li>

#### CLAS12 will extend these studies to $0.05 < Q^2 < 12 \text{ GeV}^2$ and W < 2.4 GeV

- Exclusive electroproduction of Nπ, Nη, Nππ, KY reactions from unpolarized proton target with longitudinally polarized electron beam
- Data will provide access to higher-lying N\* states
- Goal is the understanding of active degrees of freedom that account for N\* structure vs. distance scale

## Where Do We Stand in Deciphering Nature?

One-photon approximation, Effective models ...

Simplificati-

Emergence of mass, Gluon & quark dressing, Running couplings ...

Complexity

Hot QCD, Age of verse ~10 µs ... Time/Energy

Resonances are sufficiently complex to reveal hidden QCD and early Universe phenomena, but not so complex that fundamental theories are bound to fail



[Gross et al, Eur. Phys. J. C 83,1125 (2023)]