Suppression of π^o electroproduction in eA from CLAS

International workshop on CLAS12 physics and future perspectives at JLab 23 March, 2023

Taisiya Mineeva

CLAS committee approved paper draft

(F. Bossu, Z. Meziani, L. Weinstein)

Suppression of neutral pion production in deep-inelastic scattering off nuclei with the **CLAS** detector

Taisiya Mineeva,^{1,*} William K. Brooks,^{1,2,3,4} K. Joo,⁵ H. Hakobyan,^{1,2} Jorge A. López,⁶ and O. Soto⁷

¹Universidad Técnica Federico Santa María, Valparaíso, Chile ²Centro Científico y Tecnológico de Valparaíso, Valparaíso, Chile

³Instituto Milenio de Física Subatómica en la Frontera de Altas Energías, Santiago, Chile

⁴Department of Physics and Astronomy, University of New Hampshire, Durham, NH 03824, USA

⁵University of Connecticut, Storrs, CT, USA

⁶Physikalisches Institut, Universität Heidelberg, Heidelberg, Germany

⁷Universidad de La Serena, La Serena, Chile

(Dated: January 16, 2023)

We present the first threefold differential neutral pion multiplicity ratios produced in semi-inclusive deep inelastic electron scattering on carbon, iron and lead nuclei normalized to deuterium from CLAS measurements at Jefferson Lab. We found that the neutral pion multiplicity ratio is maximally suppressed for the leading hadrons (energy transfer $z \to 1$), varying from 25% on carbon up to 75% in lead. An enhancement of the multiplicity ratio at low z and high p_T^2 is observed suggesting an interconnection between these two variables. This behavior is qualitatively similar to the previous two-fold differential measurement of charged pions by the HERMES Collaboration. However, in contrast to the published CLAS and HERMES results on charged pions, we observe the largest enhancement at high p_T^2 for lightest nuclei - carbon, and the lowest enhancement for the heaviest nuclei - lead. This behavior suggests a competition between partonic multiple scattering, which causes enhancement, and hadronic inelastic scattering, which causes suppression.

CLAS committee approved paper draft

(F. Bossu, Z. Meziani, L. Weinstein)

Suppression of neutral pion production in deep-inelastic scattering off nuclei with the CLAS detector

Taisiya Mineeva,^{1,*} William K. Brooks,^{1,2,3,4} K. Joo,⁵ H. Hakobyan,^{1,2} Jorge A. López,⁶ and O. Soto⁷

¹Universidad Técnica Federico Santa María, Valparaíso, Chile ²Centro Científico y Tecnológico de Valparaíso, Valparaíso, Chile ³Instituto Milenio de Física Subatómica en la Frontera de Altas Energías, Santiago, Chile

Important contribution to Hadronization programm @ CLAS and CLAS12

We present the first threefold differential neutral pion multiplicity ratios produced in semi-inclusive deep inelastic electron scattering on carbon, iron and lead nuclei normalized to deuterium from CLAS measurements at Jefferson Lab. We found that the neutral pion multiplicity ratio is maximally suppressed for the leading hadrons (energy transfer $z \rightarrow 1$), varying from 25% on carbon up to 75% in lead. An enhancement of the multiplicity ratio at low z and high p_T^2 is observed suggesting an interconnection between these two variables. This behavior is qualitatively similar to the previous two-fold differential measurement of charged pions by the HERMES Collaboration. However, in contrast to the published CLAS and HERMES results on charged pions, we observe the largest enhancement at high p_T^2 for lightest nuclei - carbon, and the lowest enhancement for the heaviest nuclei - lead. This behavior suggests a competition between partonic multiple scattering, which causes enhancement, and hadronic inelastic scattering, which causes suppression.

Why suppression in eA?

Color propagation and hadronization

EG2 collaboration

Will Brooks (UTFSM) Raphael Dupré (Orsay) Ahmed El Alaoui (UTFSM) Lamiaa El Fassi (MSU) Kawtar Hafidi (ANL) Hayk Hakobyan (UTFSM) Ken Hicks (Ohio) Maurik Holtrop (UNH) Kyungseon Joo (UCONN) Taisiya Mineeva (UTFSM) Brahim Mustapha (ANL) Larry Weinstein (ODU) Michael Wood (CC)

Master Students @ UTFSM M.Barria C.San Martin B.Benkel

PhD Students @ UTFSM A.Radic M.Ungerer

Young researchers E.Molina

Engineers @UTFSM J.Gonzalez A.Lepe Pino R.Rios V.Saona Urmeneta E.Valdivia

Color propagation and hadron formation

Access to microscopic information at the fm scale

Accardi, Arleo, Brooks, d'Enterria, Muccifora Riv.Nuovo Cim.032:439553,2010 [arXiv:0907.3534]

Space-time view of hadronization in DIS

Path of (struck) quark is divided into "partonic phase" and "hadronic phase"

The partonic phase persists for a distance L_c , over which p_T broadening via \hat{q} , and partonic energy loss ΔE_q , occur

Space-time view of hadronization in DIS

Observables

Transverse momentum broadening

Connects to color lifetime τ_p , quark k_T , transport coefficient qhat and quark E_{loss}

$$\Delta \langle p_{\rm T}^2 \rangle = \langle p_{\rm T}^2 \rangle_A - \langle p_{\rm T}^2 \rangle_p$$

$$\Delta \langle p_{c}^{2} \rangle [GeV^{2}$$

Ľ

Hadronic Multiplicity ratio

Connects to hadron formation phase In-medium interaction of forming hadron

$$R_{\rm A}^{h}\left(\nu, Q^{2}, z, p_{T}\right) = \frac{\frac{N_{h}(\nu, Q^{2}, z, p_{T})}{N_{e}(\nu, Q^{2})|_{\rm DIS}}\Big|_{\rm A}}{\frac{N_{h}(\nu, Q^{2}, z, p_{T})}{N_{e}(\nu, Q^{2})|_{\rm DIS}}\Big|_{\rm D}} 4$$
$$m_{\rm M} - \frac{N_{h}(Q^{2}, \nu, z, p_{\rm T})/N_{e}(Q^{2}, \nu)|_{p}}{N_{e}(Q^{2}, \nu)|_{p}}$$

Simultaneous

Extraction of color lifetime Brooks-Lopez model

Estimating the color lifetime of energetic quarks William K. Brooks ^{a,b,c,*}, Jorge A. López^{b,d}

•The **color lifetime** was estimated using two observables in the HERMES data with a space-time model that is consistent with, but independent of, Lund string fragmentation.

•The answer depends on the kinematics and ranges from **2 to 8 fm/c**.

Simultaneous fit to two observables, $\Delta pT2$ and R for charged pions

The values of the color length **L**_c resulting from simultaneous fit to *pT2* and *R*

https://arxiv.org/abs/2004.07236

EG2 experiment @ 5 GEV

By using dual target approach, EG2 experiment makes a *precise* comparison of observables in a large nucleus A with respect to a small D

EG2 experiment running conditions

- Electron beam 5.014 GeV
- Targets ²H, ¹²C, ⁵⁶Fe, ²⁰⁷Pb (AI, Sn)
- Luminosity 2 · 10³⁴ 1/(s · cm²)

"A double-target system for precision measurements of nuclear medium effects," H. Hakobyan et al. NIM A 592 (2008) 218–223

3D Multiplicities $R_{\pi 0}$ (Q², v, z) on ¹²C, ⁵⁶Fe, ²⁰⁷Pb to D

T.Mineeva et al.

3D Multiplicities $R_{\pi 0}(Q^2, v, z)$ on ¹²C, ⁵⁶Fe, ²⁰⁷Pb to D

T.Mineeva et al.

In the absence of any nuclear effects this observable is equal to unity

3D Multiplicities $R_{\pi 0}(Q^2, v, z)$ on ¹²C, ⁵⁶Fe, ²⁰⁷Pb to D

Ζ

- Attenuation depends on nuclear size A
- Maximally suppressed for leading hadrons: from 25% on C to 75% on Pb
- No dependence on Q^2 and v observed
- Quantitative behavior compatible with Hermes

3D Multiplicities $R_{\pi 0}(v, z, pT^2)$ on ¹²C, ⁵⁶Fe, ²⁰⁷Pb to D

T.Mineeva et al.

3D Multiplicities $R_{\pi 0}(v, z, pT^2)$ on ¹²C, ⁵⁶Fe, ²⁰⁷Pb to D

T.Mineeva et al.

- Enhancement of R_{π0} at low z and high on pT2
- Largest enhancement at hight pT2 for C, lowest - for Pb
- Opposite to CLAS and HERMES data on charged pions

Interpreting Nuclear DIS Data: π⁺ and π⁻ multiplicity ratios

PHYSICAL REVIEW C 105, 015201 (2022)

Measurement of charged-pion production in deep-inelastic scattering off nuclei with the CLAS detector

S. Morán,^{1,3} R. Dupre,² H. Hakobyan^(a),^{1,52} M. Arratia,³ W. K. Brooks,¹ A. Bórquez,¹ A. El Alaoui,¹ L. El Fassi,^{4,5} K. Hafidi, R. Mendez,¹ T. Mineeva,¹ S. J. Paul,³ M. J. Amaryan,³⁶ Giovanni Angelini,¹⁹ Whitney R. Armstrong,⁵ H. Atac,⁴³

High-precision three-dimensional data is compared to the model predictions; GiBUU and Guiot-Kopeliovich models find semi-qualitative agreement

Results from EG2: A and p multiplicities

"First Measurement of Λ Electroproduction off Nuclei in the Current and Target Fragmentation Regions"

T. Chetry, L. El Fassi, W.K. Brooks, R. Dupré, A. El Alaoui, K. Hafidi et al (CLAS Collaboration) https://doi.org/10.48550/arXiv.2210.13691

- At low-z there is a "pile up" of events 7 times more than for pion! Underpredicted by GiBUU.
- At high-z there is little attenuation compared to that on the pion. Agrees with GiBUU.

• The multiplicity ratio for the lambda and the proton have the same magnitude and the same pattern of ordering

Results from EG2 $\Delta \langle p_{\rm T}^2 \rangle$

Simulta

Quark Propagation and Hadronization at CLAS12

Approved experiment Run Group E (E-12-06-117) to start in Jan, 2024

PAC rating of the experiment = **A**-, reaffirmed at Jeopardy Review in PAC 48 Number of PAC days granted = **60 PAC days**, reaffirmed at JR in PAC 48.

see H.Hakobyan talk on RG-E update

Quark Propagation and Hadronization at CLAS12

hadron	сτ	mass	flavor content	limiting error (60 PAC days)
π^0	25 nm	0.13	uūdā	5.7% (sys)
$\pi^{\scriptscriptstyle +}$, $\pi^{\scriptscriptstyle -}$	7.8 m	0.14	uđ , dū	3.2% (sys)
η	170 pm	0.55	uūdāss	6.2% (sys)
ω	23 fm	0.78	นนิdสิีรริ	6.7% (sys)
η'	0.98 pm	0.96	uūdāss	8.5% (sys)
ϕ	44 fm	1	uūdāss	5.0% (stat)*
fl	8 fm	1.3	นนิdสิีรริ	-
K ⁰	27 mm	0.5	ds	4.7% (sys)
<i>K</i> +, <i>K</i> -	3.7 m	0.49	นริ, นิร	4.4% (sys)
р	stable	0.94	uud	3.2% (sys)
p	stable	0.94	ūūđ	5.9% (stat)**
Λ	79 mm	1.1	uds	4.1% (sys)
A(1520)	13 fm	1.5	uds	8.8% (sys)
Σ^+	24 mm	1.2	uus	6.6% (sys)
Σ-	44 mm	1.2	dds	7.9% (sys)
Σ^0	22 pm	1.2	uds	6.9% (sys)
Ξ^0	87 mm	1.3	USS	16% (stat)*
Ξ-	49 mm	1.3	dss	7.8% (stat)*

More Luminosity More Acceptance Better Particle ID

eA kinematics: past & future

CLAS @ 5 GeV: √s = 3.2 GeV

CLAS @11 GeV: √s = 4.6 GeV

CLAS @ 22 GeV: √s = 6.4 GeV

EIC eRHIC: √s = 20 - 140 GeV

HERMES @27 GeV: $\sqrt{s} = 7.2 \text{ GeV}$

Summary

- The microscopic information on space-time dynamics of hadronization can be accessed in DIS using nuclear medium *A* of increasing size
- Transverse momentum broadening and hadronic multiplicity ratio observables provide insight on the lifetime of 'free' quark and formation of hadrons
- Extraction of 'free' quark lifetime in Brooks-Lopez geometrical model based on simultaneous fit to multiplicity ratios and ΔpT2 to HERMES data
- CLAS at 6 GeV high luminosity data on ²H, ¹²C, ⁵⁶Fe, ²⁰⁷Pb:
 - CLAS committee approved paper on three-dimensional π^o multiplicity ratios
 - Published results on multi-dimensional π + and π multiplicities (S.Morán et al.)
 - Published results on Λ multiplicity ratios and Δ pT2 (T.Chetry et al.)
 - In process: proton multiplicities (M.Wood), $\Delta pT2$ for π^+ (E.Molina), $\Delta pT2$ for double pion production (M.Barria), π^+ azimuthal dependencies (C. San Martin), ω and η multiplicities (A.Borguez, O.Soto), Bose-Einstein correlations (A.Radic)
- CLAS at 11 GeV: approved CLAS12 experiment (E12-06-117) will provide higher statistics and enable extraction of 4D multiplicities for a large spectrum of hadrons.

Backup slides

Interpreting Nuclear DIS Data

HERMES published results

multiplicities R(*z*, *pT*²) integrated over v, Q²

Flavor separation: π^{+/-}, K^{+/-} and p/p 2D distributions for charged hadrons 1D extraction of multiplicities for π⁰

T.Mineeva, CLAS12 workshop 2023

Z

Interpreting Nuclear DIS [GeV²] IER 0.04 0.03 **HERMES** published results 0.04 0.04 0.03 0.03 0.02 ∇ 0.02 Collaboration, Phys. I °∿~∸ 0.02 $\Delta \langle p_{\rm T}^2 \rangle$ 0.0 🔻 He 🛡 Ne Kr 0.01 👗 Xe ♦ Maximum for pions of 0.03 GeV^2 -0.0^{-1} O -0.01 -0.02-0.02 -0.03-0.03 ۳ ع 0.2 0.4 0.9 $N_h(Q^2, \nu, z, p_T)/N_e(Q^2, \nu)|_A$ **8.0** va, CLAS12 workshop 2023 (Ω^2) $^{\prime}\Lambda T$ - .)