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Normalizing Flows

Normalizing flows (NFs) are generative models that can
learn the probability density function of a complex
distribution.

NFs transform a simple probability distribution to a more
complex distribution via a sequence of invertible,
differentiable functions.

NFs were trained to model the latent representation of
simulation Lambda events (background and signal) as
well as data events, allowing for a transformation from
data to an MC-like distribution

Classification of Lambda signal events on transformed
data flattened the figure of merit curve significantly,
improving generalizability
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