Precision Short Range Correlation studies in Nuclei

Justin Estee

Short range, short lived, highly correlated pairs

High relative momentum Low center of mass momentum

n_SRC(p_rel, p_cm) = sum_pairs contact_pair phi^2(p_rel) n(p_cm) Sigma(e,e'p) = integral K sigma_ep n_SRC

Questions Answered

Pair Abundance

SRC dominate for p > 350 MeV/c

I. Korover, et al. PLB 820 (2021) 136523.

Center of Mass Motion

Pcm consistent with 2 mean field nucleons

E.O. Cohen, et al., PRL 121, 092501 (2018).

Pair Interaction

tensor to scalar transition neutron-proton pairs dominate

Schmidt and Pybus et al., Nature (2020) Pybus et al., PLB (2020) Korover and Pybus et al. PLB (2021)

ADD A DEPENDENCE sigma cm

Questions next generation

Pair Abundance

Where are pairs formed? Which nucleons pair? Do 3N SRC exist?

Center of Mass Motion

Pair Interaction

SRC pairs move in the nucleus Precision COM measurements

tensor to scalar transition neutron-proton pairs dominate Precision NN interaction at short distances

Scale (Q2) independence of SRC observables

Run Group-M (RGM)

- Ran November 2021 February 2022
- (120Sn,48Ca,40Ca,40Ar, C, 4He, D, H)
- Fully calibrated, currently reconstructing data

Questions RGM answers

Pair Abundance

Center of Mass Motion

Pair Interaction

tensor to scalar transition neutron-proton pairs dominate

SRC pairs move in the nucleus

Precision NN interaction at short distances

Questions RGM answers

Pair Abundance

Center of Mass Motion

Pair Interaction

np dominance

SRC pairs move in the nucleus

Tensor->Scalar transition (CLAS6) Precision NN interaction at short distances

Scale independence of SRC observables

Change the resolution scale of the reaction by looking at dependence on momentum transfer Q^2 , |t|

Probe

Compare different reactions using different **probes**: Electron-scattering, Proton-scattering, Photoproduction

See Jackson Pybus's talk after this

Questions RGM answers

Pair Abundance

Center of Mass Motion

Pair Interaction

SRC pairs move in the nucleus <u>Precision CM measurements</u>

Tensor->Scalar transition (CLAS6) Precision NN interaction at short distances

Scale (Q2) independence of SRC observables

Scale independence

Center of Mass Motion

Questions RGM and CaFe answer

Pair Abundance

Where are pairs formed? Which nucleons pair?

Center of Mass Motion

Pair Interaction

SRC pairs move, caracterize A dependence Precision COM measurements

Tensor->Scalar transition (CLAS6) Precision NN interaction at short distances

Scale independence of SRC observables

SRC in Asymmetric Nuclei CaFe Exp. (Hall C)

CaFe and RG-M

• CaFe

- 11 GeV: ⁹Be, ¹⁰B, ¹¹B, ¹²C, ⁴⁰Ca, ⁴⁸Ca, ⁵⁴Fe
- Small aperture spectrometers
- Separate Mean field and SRC kinematic settings
- o (e,e'p) only
- RG-M
 - 6 GeV : C, ⁴⁰Ca, ⁴⁸Ca, ¹²⁰Sn
 - CLAS12
 - (e,e'p), (e,e'pN)

Data / MC comparison

Good agreement with mean field nucleons between data and simulation (SIMC)

PRELIMINARY No systematic errors.	Integrated Ratios ⁴⁸ Ca/ ⁴⁰ Ca SRC per proton
RG-M (Hall B)	1.03 (2)
CaFe (Hall C)	1.02 (1)

RGM very preliminary Confirms CaFe results

RG-M (CaFe) Julian Kahlbow (MIT) Ron Wagner (Tel Aviv U.) (e,e') and (e,e'p) disagreement?

(e,e') cross section ratio is NOT the SRC pair ratio!

Varying model parameters changes SRC pair ratio by 10%

Questions RGM answers

Pair Abundance

np dominance Where are pairs formed? Which nucleons pair? Observe 3N SRC

Center of Mass Motion

Pair Interaction

SRC pairs move, caracterize A dependence Precision COM measurements

Tensor->Scalar transition (CLAS6) Precision NN interaction at short distances

Scale independence of SRC observables

Pathway to 3N SRC Discovery...

Characterize 3N SRC kinematics...

Variables to suppress FSI...

Q2, Xb, p/q ??? New ones

3N SRC cross-section...

Describing 3-NN interaction

2N-SRC (6 parameters)

- 3 center of mass
- 2 Euler angles
- 1 NN interaction variable (p_{rel})

3N-SRC (9 parameters)

- 3 center of mass
- 3 Euler angles
- 3 NN interaction variables

?

³He wavefunction (ppn) No 3-body interactions

3NN interaction variables

3 particles -> 9 variables

$$p_{tot} = p_1 + p_2 + p_3$$

- 3 center of mass
- 3 euler angles
- 3 NN interaction parameters

3N SRC modified-Dalitz plot (Denniston plot)

3-NN wavefunction slice

3-NN wavefunction slice

Acceptance

