# Run Group H Transversely Polarized Target Exp.

CLAS Collaboration Meeting Jefferson Lab, 21<sup>st</sup> March 2023

### Run Group H

### CLAS12 with a transversely polarized target and polarized beam

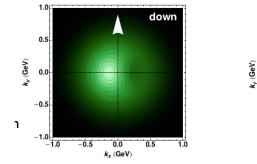
| Experiment | Contact        | Title                                                                                                          | Rating | PAC days |
|------------|----------------|----------------------------------------------------------------------------------------------------------------|--------|----------|
| C12-11-111 | M. Contalbrigo | Transverse spin effect in SIDIS at 11 GeV<br>with a transversely polarized target using<br>CLAS12              | A      | 110      |
| C12-12-009 | H. Avakian     | Measurement of transversity with di-<br>hadron production in SIDIS with a<br>transversely polarized target     | A      | 110      |
| C12-12-010 | L. Elauadrhiri | Deeply Virtual Compton scattering at 11<br>GeV with transversely polarized target<br>using the CLAS12 detector | A      | 110      |

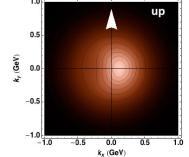
**C1 condition**: "One has to achieve at least within a factor 2 the figure-of-merit determined by the target design value (I=1 nA, and 60% polarization) and a spin relaxation time of 50 days at 1 nA before the experiments with the transversally polarized target are approved". PAC39 [2012]

All RGH experiments selected among the high impact JLab measurements

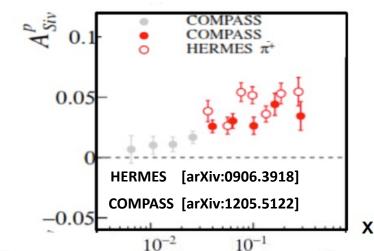
PAC42 [2014]

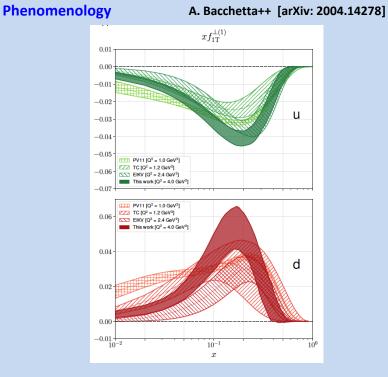
Since then: RGH status confirmed during jeopardy in 2020 RGH program becomes a pillar of EIC science case Only new data: COMPASS 2022 deuteron run



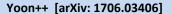


Contalbrigo M.

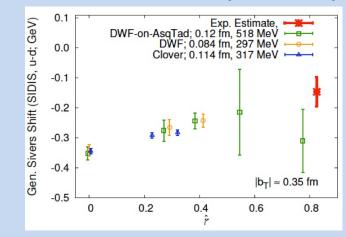
### SIDIS: Sivers Spin-Orbit Effect


# $f_1(x,k_T^2;Q^2) - \frac{k_x}{M}f_{1T}^{\perp}(x,k_T^2;Q^2)$

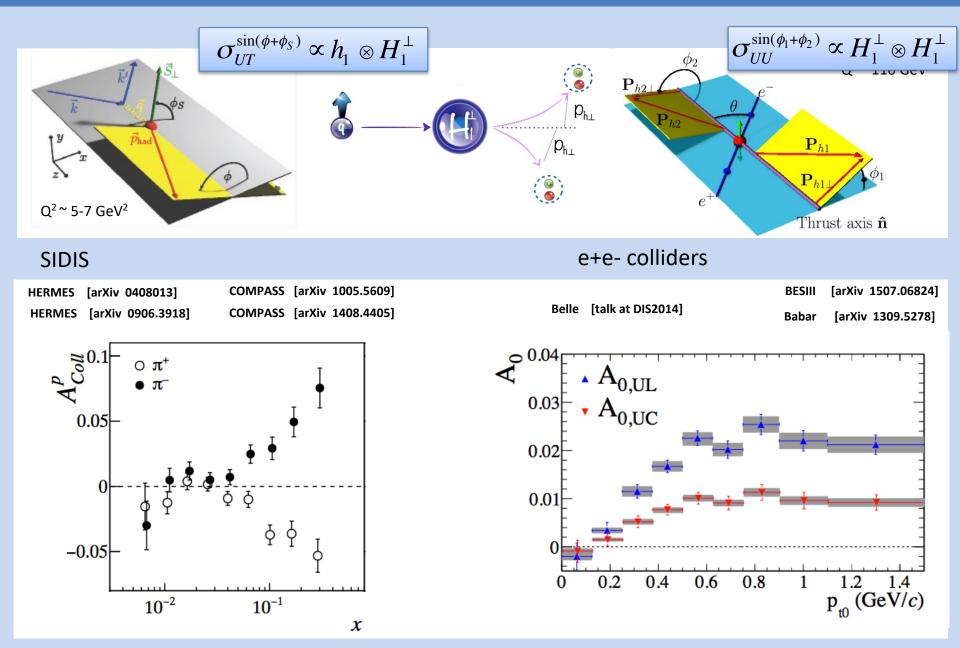

Quark distribution imbalance connected to orbital angular momentum and FSI





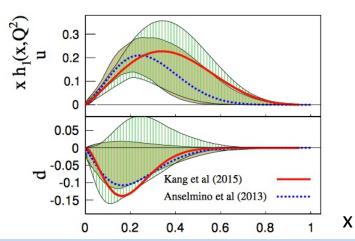


#### **SIDIS data**





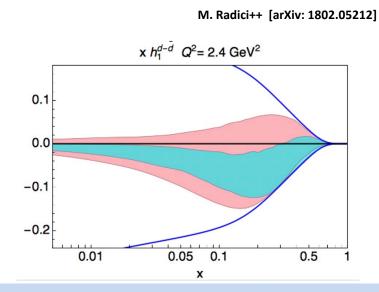

#### Lattice calculations

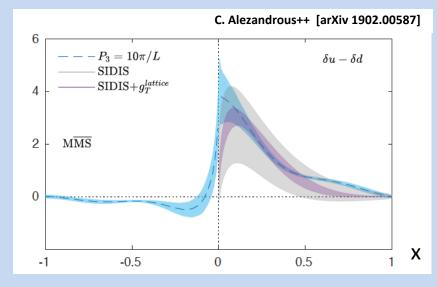





# SIDIS: Collins Spin-Orbit Effect

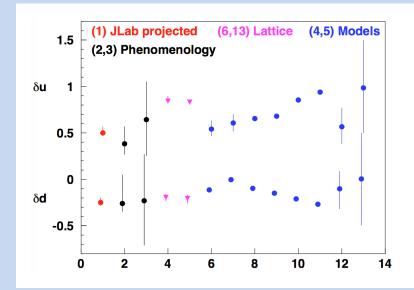



## SIDIS: Transversity & Tensor Charge

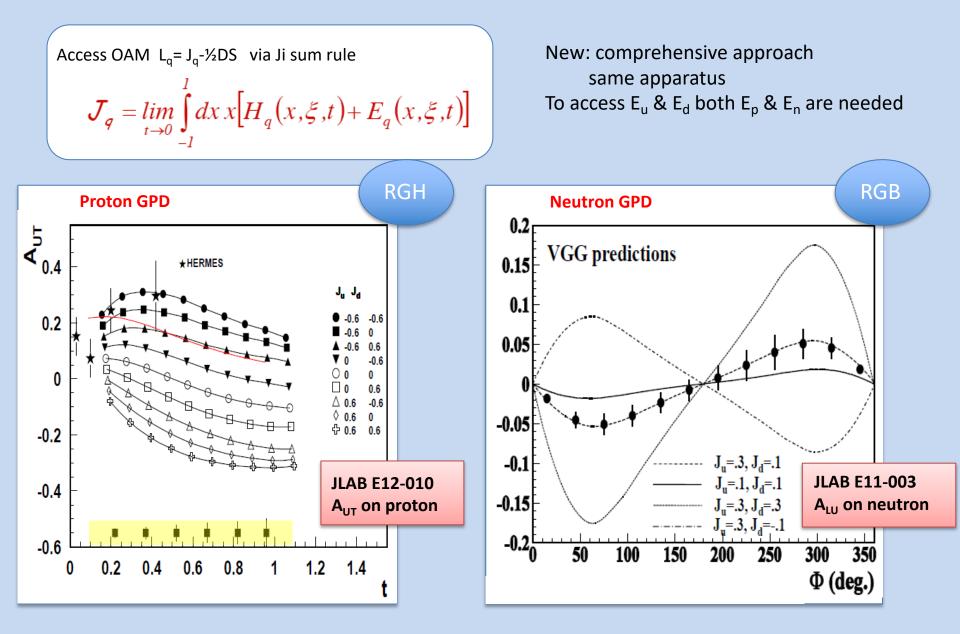

#### TMD formalism validated for SIDIS, DY, e+e-



#### M. Boglione++ [arXiv 1511.06924]

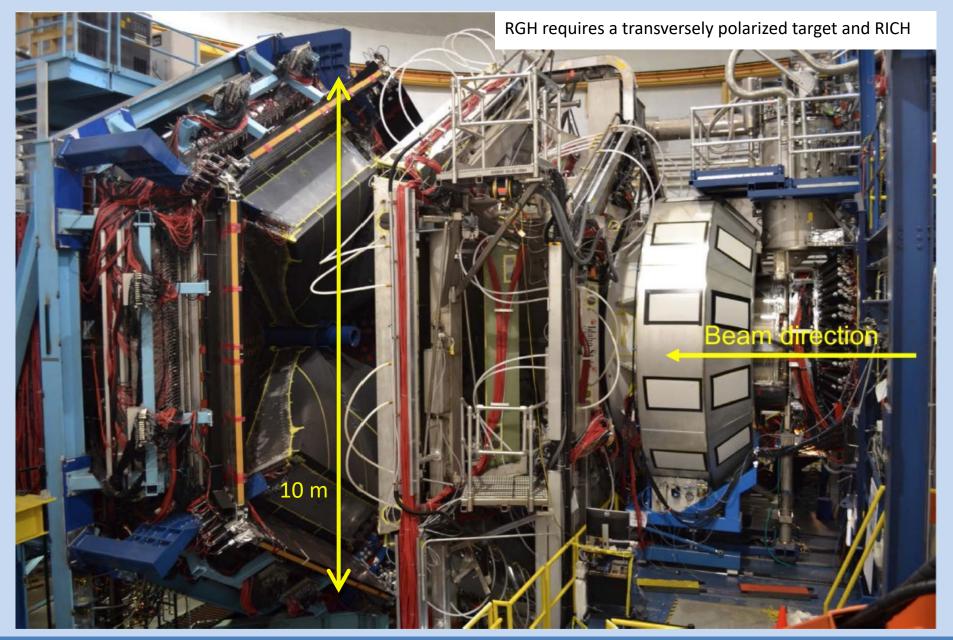

#### Di-hadron: Collinear formalism, access to pp data






#### New lattice tools being developed

### BSM links: tensor coupling and electric dipole moment



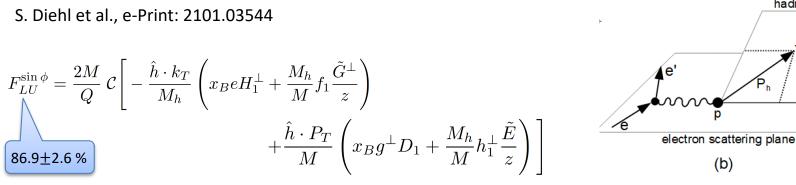

### **DVCS: Orbital Angular Momentum**

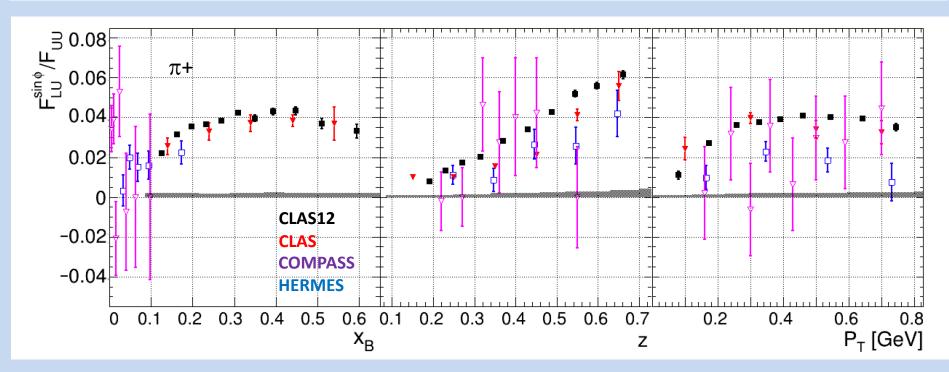




# **RGH Experimental Setup**




# Beam Spin Asymmetry ( $\pi$ +)



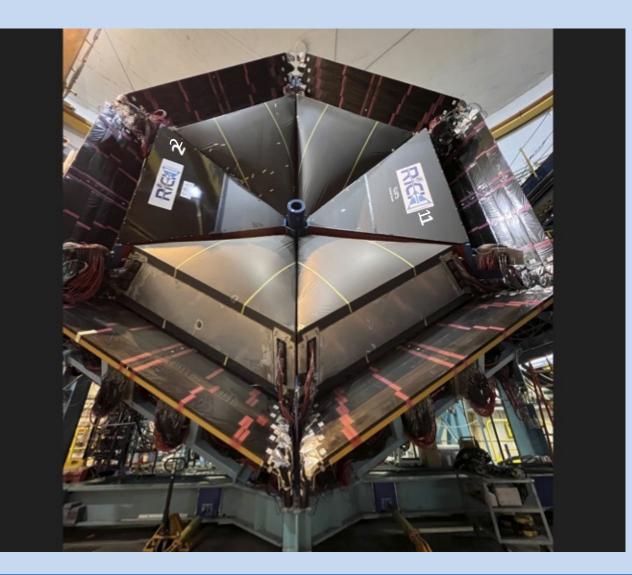

hadronic plane

z-axis

### CLAS12 proton data (RGA)



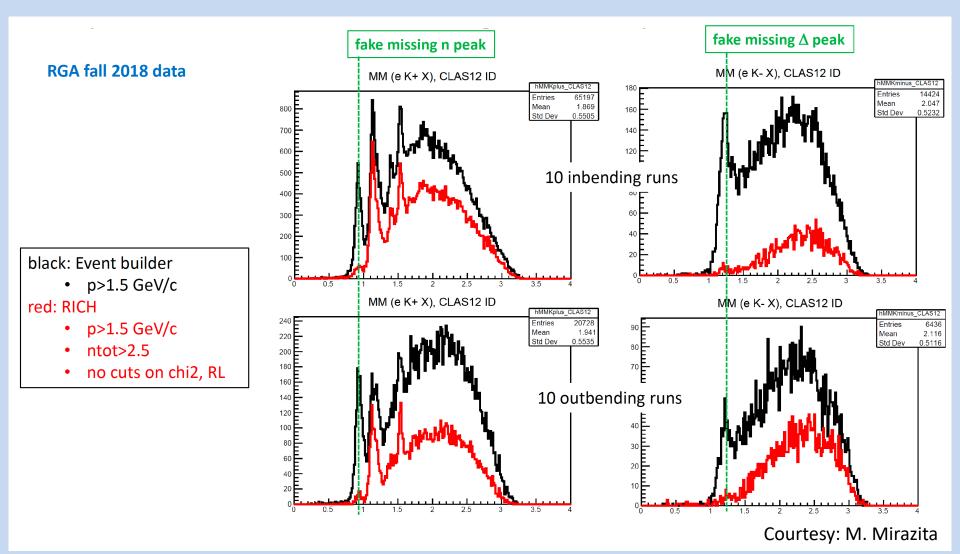



# RICH @ CLAS12








Completed in June 2022 with the symmetric configuration dedicated to the runs with polarized targets (now ongoing)



# **Particle Identification**

### Entering PID game with pass2 data

Check with semi-inclusive physics channel  $ep \rightarrow eKX$ 





pros: minimize the dilution and nuclear background (due to not-polarizable material)

pros: maximize acceptance (thanks to the light magnetic system)

cons: beam heating and radiation damage

cons: long preparation time

NH<sub>3</sub>/ND<sub>3</sub>: pros: consolidated technology and infrastructure at JLab

cons: increased systematic effect (nuclear effects, non uniform target density)

cons: impact on the experimental setup (massive magnet of strong field and reduce acceptance)

| Target               | HDice | NH3/ND3 |
|----------------------|-------|---------|
| Average polarization | 41%   | 86%     |
| Overhead             | 10%   | 3-5%    |
| Dilution             | 1/3   | 3/17    |
| FOM                  | 13%   | 15%     |

### **Target Options**

Use standard material  $NH_3/ND_3$  with optional alternatives

**External DNP**: A target of NH<sub>3</sub>/ND<sub>3</sub> that is continuously polarized at 1.0 K and 5 T in place of the CLAS12 solenoid

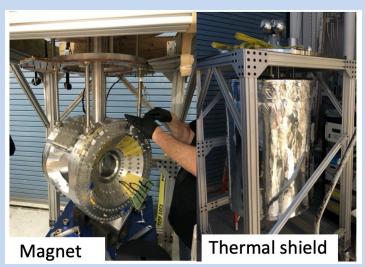
Most viable target solution but largest impact on CLAS12

**Aka-HDice**: A frozen-spin target of NH<sub>3</sub> and ND<sub>3</sub> inside the CLAS12 solenoid and operating at approximately 0.1 K and 1 T

Resembling HDice approach, similar performance and risks New R&D against beam heating Similar specifications for MgB<sub>2</sub>

**Internal DNP:** A target of NH<sub>3</sub>/ND<sub>3</sub> that is **continuously polarized** at 0.3 K and 2.5 T **inside the CLAS12** solenoid

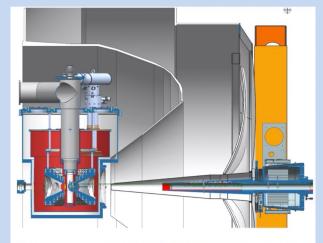
Compelling but challenged by the required field uniformity New specifications for MgB<sub>2</sub>

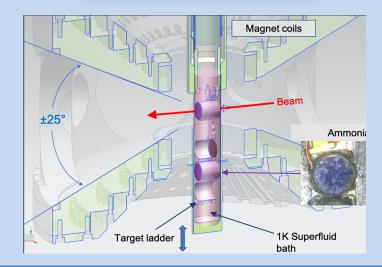



Target CLAS12



### **Current Most Viable Solution**


### Low risk: 5T magnet being prepared for Hall-C




#### Major impact on CLAS12: Incompatible with central detector



Still needed: suitable cryostat design 1K target refrigerator compensating beam chiacane



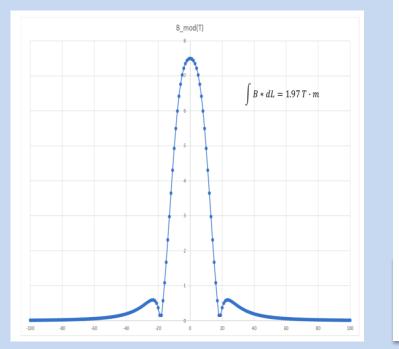


Limited acceptance

 $\pm 25^{o}$  Forward

Around 90° Recoil

### Beam Chicane Magnets


# Hall-C magnet field integral

 $\int Bdl = 1.36 \,\mathrm{Tm}$ 

A symmetric 3-magnet beam chicane at 11 GeV requires

1.4 Tm and 2.8 Tm magnets

Possible commercial solution may exist





Home » 7.5 Tesla Split Pair Cryogen-FREE Magnet System Dual RTB

### 7.5 Tesla Split Pair Cryogen-FREE Magnet System Dual RTB

By Steve Short | January 21, 2020 | 0 Comments



7.5 Tesla, Split Pair Cryogen-FREE Superconducting Magnet System with dual room temperature bores. Compact design allows for use with optical cryostat.

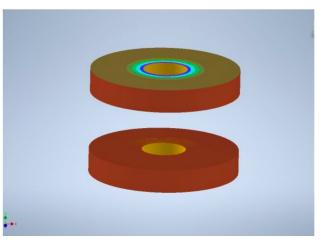
#### Customer Location: Florida, USA

- 7.5 Tesla Split Pair Magnet.
- 2.375 inch (60.3mm) ID Vertical (Radial to Field) Room Temperature Bore.
- 9.5 inch (241mm) Distance to Field Center.
- 2.00 inch (50.8mm) ID Horizontal (Axial to Field) Room Temperature Bore.
- 8.0 inch (203mm) Distance to Field Center.
- + 0.1 % Central Field Homogeneity Over 10 mm DSV.
- Single, Sumitomo Pulse Tube Cryocooler, Remotely Mounted.

### Courtesy: X. Wei

### Beam Chicane Magnets

Existing design by Cryomagnetics, Inc


Could be already suitable for a new target magnet design

Could be anyway adapted (uniformity is not an issue here) :

- ✓ Field orientation
- ✓ Maximum field increase
- ✓ Bore size enlargement

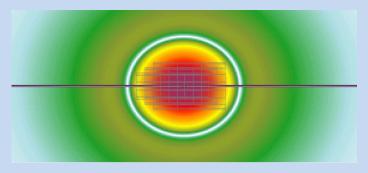
#### Production time $\geq$ 2 years

| 1.<br>2.<br>3.<br>4.<br>5.  | ID(")<br>4.250<br>4.912<br>5.708<br>6.563<br>7.535 | OD(")<br>4.912<br>5.708<br>6.563<br>7.535<br>14.407 | Width(")<br>2.250<br>2.250<br>2.250<br>2.250<br>2.250<br>2.250 | zCen(")<br>2.875<br>2.875<br>2.875<br>2.875<br>2.875<br>2.875 | NTurns<br>377.800<br>523.900<br>711.800<br>1095.500<br>10966.800 |
|-----------------------------|----------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------|------------------------------------------------------------------|
| 6.<br>7.<br>8.<br>9.<br>10. | 4.250<br>4.912<br>5.708<br>6.563<br>7.535          | 4.912<br>5.708<br>6.563<br>7.535<br>14.407          | 2.250<br>2.250<br>2.250<br>2.250<br>2.250<br>2.250             | -2.875<br>-2.875<br>-2.875<br>-2.875<br>-2.875<br>-2.875      | 377.800<br>523.900<br>711.800<br>1095.500<br>10966.800           |

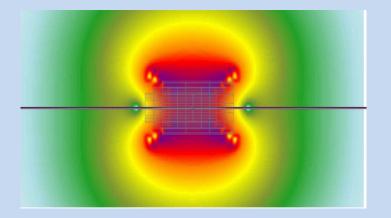


\* operating current 87.32 amps

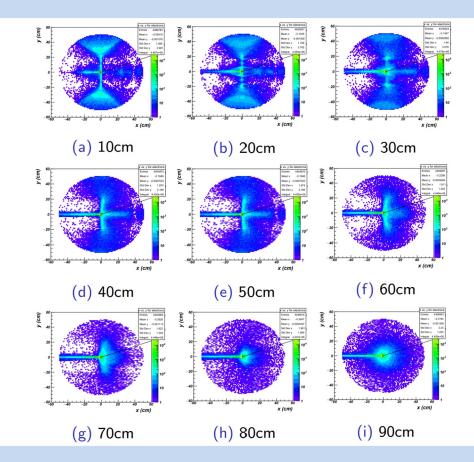
### **Moeller Shield**


#### ELMO GEMC Cross-section (without Tungsten Tip)

### New shielding optimization

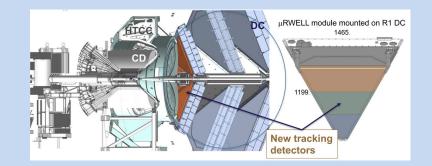


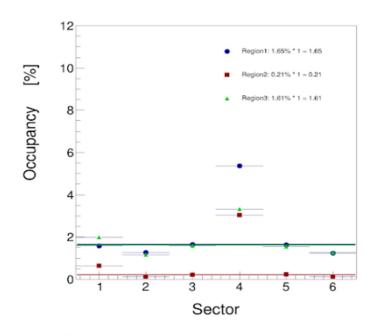

#### Transverse magnet field


#### Top view

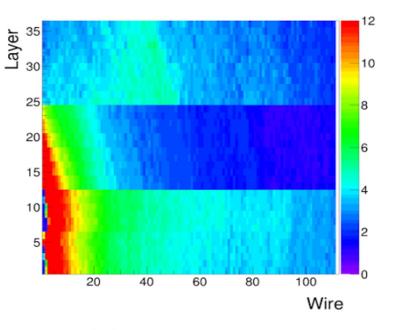


Side view





### Moller distribution along dummy tracking planes




### **DC Occupancy**

Mostly reasonable except for one sector On sector 4 concentrates on a small portion of wires Should benefit from the AI based tracking (pass2) May benefit from the high-luminosity upgrade (µ-Rwell)





(a) Average occupancy Rate.



(b) Occupancy Map.

### **Preliminary Assessment**

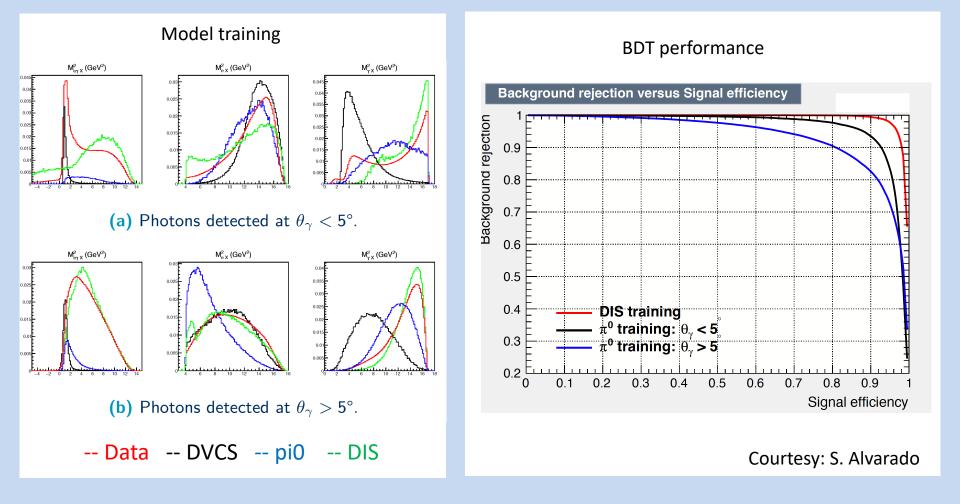
### From the report to the S&T DOE Review:

Even with the most conservative approach

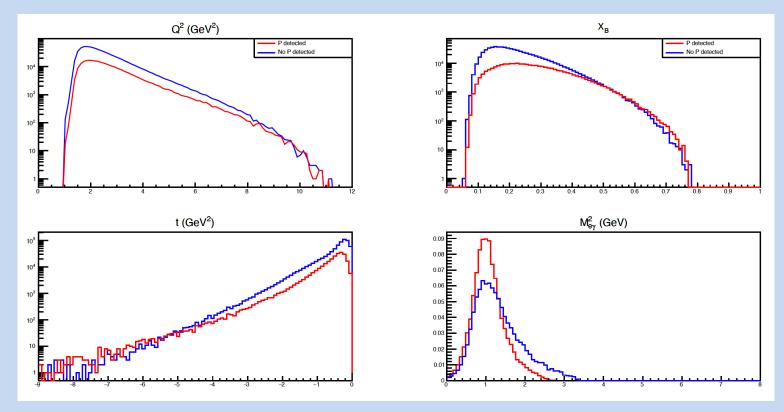
- reduction in luminosity from 4x10<sup>33</sup> cm<sup>-2</sup>s<sup>-1</sup> to 1x10<sup>33</sup> cm<sup>-2</sup>s<sup>-1</sup>;
- increase in average target polarization from 41% to 86%;
- change in the dilution factor from 1/3 to 3/17;
- operation of 5 sectors (instead of 6) of CLAS12 Forward Detector due to electromagnetic background;
- CLAS12 Central Detector removal (this only affects the DVCS program).

RG-H experiments will provide significant data in the valence quark region, extending significantly the kinematics covered by HERMES and COMPASS measurements and providing a unique and crucial input for studies on the 3D structure of the proton.

Further studies indicate it should be possible to operate CLAS12 with a transversely dynamically polarized ammonia target at a luminosity of at least 2x10<sup>33</sup> cm<sup>-2</sup>s<sup>-1</sup> (minimum PAC requirement) with remaining limitations:

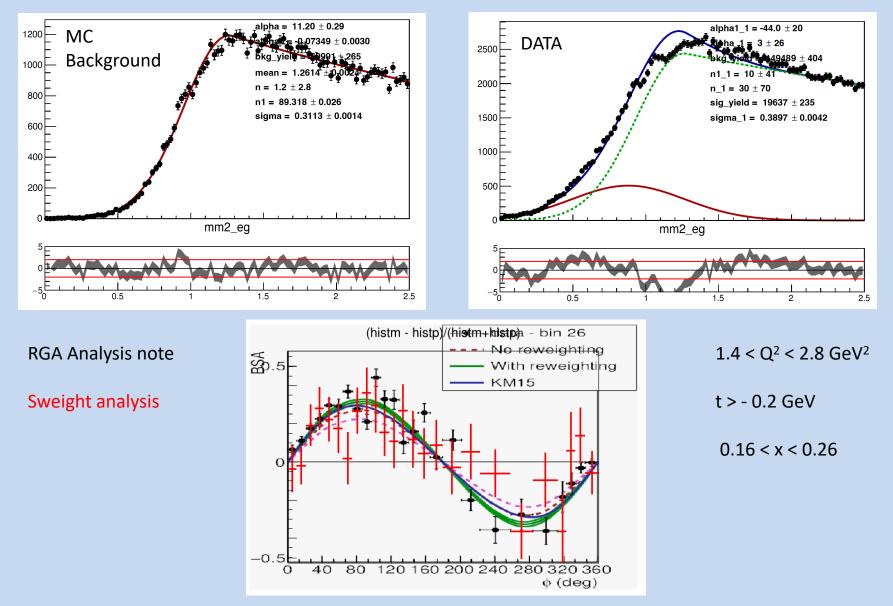

- polar angle acceptance limited to forward angles less than 25 degrees by the transverse magnet aperture;
- CLAS1 Central Detector incompatibility with the proposed setup.

High luminosity CLAS12 program is essential for RGH goals


✓ C12-11-111
 ✓ C12-12-009
 ✓ C12-12-010

Test of ML approach on RGA data (LH<sub>2</sub> target: the simplest case)

Challenging background rejection, but potentially extended statistics and phase space




### After BDT selection:



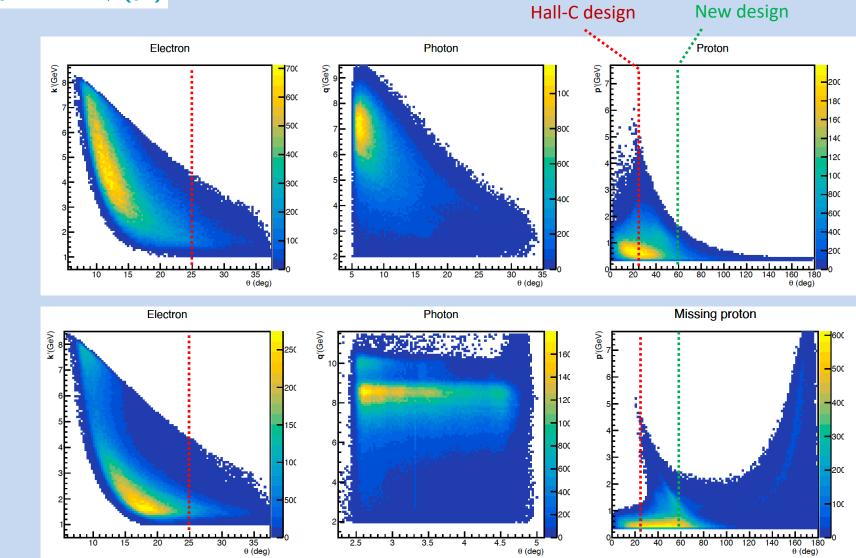
|         | $	heta_\gamma < 5^\circ$ | Remaining | $	heta_\gamma > 5^\circ$ | Remaining |
|---------|--------------------------|-----------|--------------------------|-----------|
|         |                          | on data   |                          | on data   |
| DVCS    | 83.5%                    |           | 86.93%                   |           |
| $\pi^0$ | 3.64%                    | <10.3%    | 16.3%                    | <100%     |
| DIS     | 0.044%                   | <1.2%     | 0.77%                    | <9.16%    |

Sweight method: weight each event as defined by a discriminating distribution analysis



## **DVCS with Proton Tagging**

Assume just a basic tracking (only angles) Background rejection versus Signal efficiency rejection After BDT selection: 0.9 Background 0.8  $M_{eX}^2$  (GeV<sup>2</sup>)  $M_{e\gamma X}^2$  (GeV<sup>2</sup>)  $M_{\gamma X}^2$  (GeV<sup>2</sup>) 0.7 0.02 0.03 0.07 0.6 0.06 0.025 0.02 0.05 0.5 0.02 0.015 0.04 0.4 FD Training 0.015 CD Training 0.03 0.01 0.3 FD+CD Training 0.01 0.02 0.2 0.005 0.1 0.2 0.3 0.5 0.6 0.7 0.8 0.9 0.4 0.005 0.01 Signal efficiency  $\Delta \cos^2 \theta_{\gamma p}$  $\Delta \theta_{\rm p}$  (deg)  $\Delta \phi$  (deg) PID distribution of proton candidates 0.18 0.07 0 0.16 0.06 0.14 0.08 0.05 20.00 0.12 0.04 0.1 0.06 0.08 0.03 0.04 0.06 0.02 0.04 0.02 0.01 0.02 0 20 40 60 80 69.20 100


Part of mis-ID could be recover with pass2 tracking

Better control, but need validation on RGC data

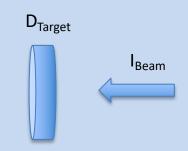
■ 2212 ■ 0 ■ 321 ■ 45 ■ 211 ■ Other

## Alternate Target Holding Magnet

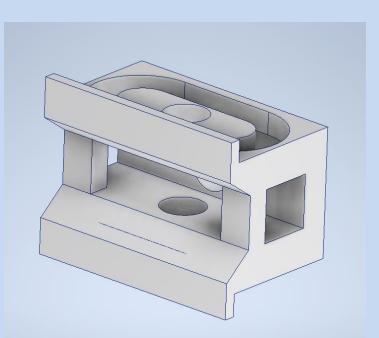
 $ep 
ightarrow e\gamma(p)$ 



Contalbrigo M.


FD:

FT:

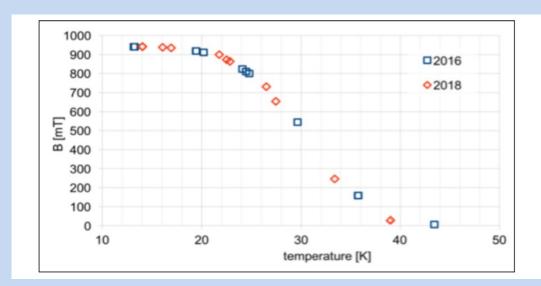

### Alternate Target Holding Magnet

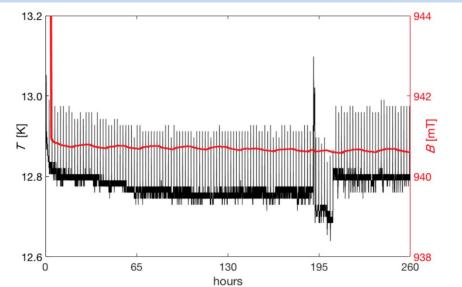
New concept being investigated with JLab magnet group Goal: maximize the physics outcome

- \* design for a short target ( Lumi  $\, \propto \, D_{Target} \, x \, I_{beam}$  )
- \* optimize acceptance
- \* reduce integrated field  $\rightarrow$  simplify beam chicane
  - $\rightarrow$  limit Moeller dispersion ?





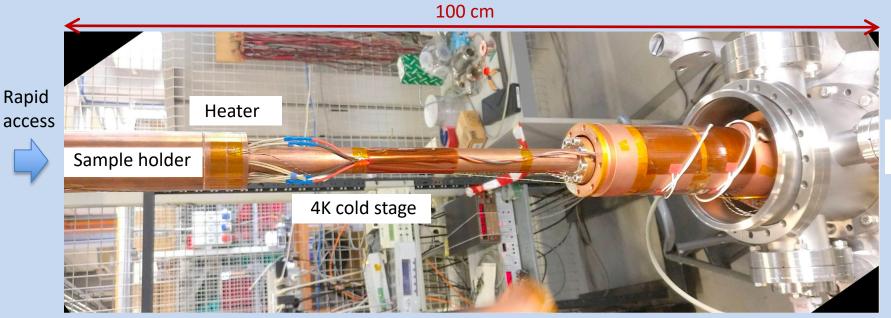




Courtesy: X. Wei

Challenges: preserve 100 ppm uniformity, cope with strong forces

# Alternate Target Holding Magnet

# Bulk superconducting MgB<sub>2</sub> magnet magnetization frozen at the transition to superconductor



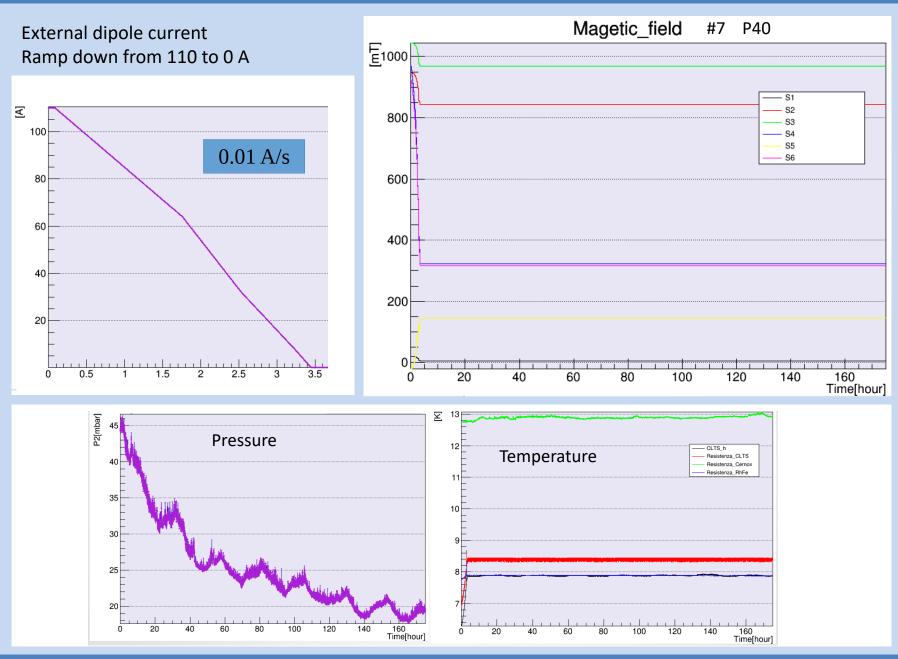



- ✓ Decouple mechanics
- $\checkmark$  Reduce material budget
- ✓ Increase acceptance
- ✓ Simplify cryostat
- ✓ Suppress quenches



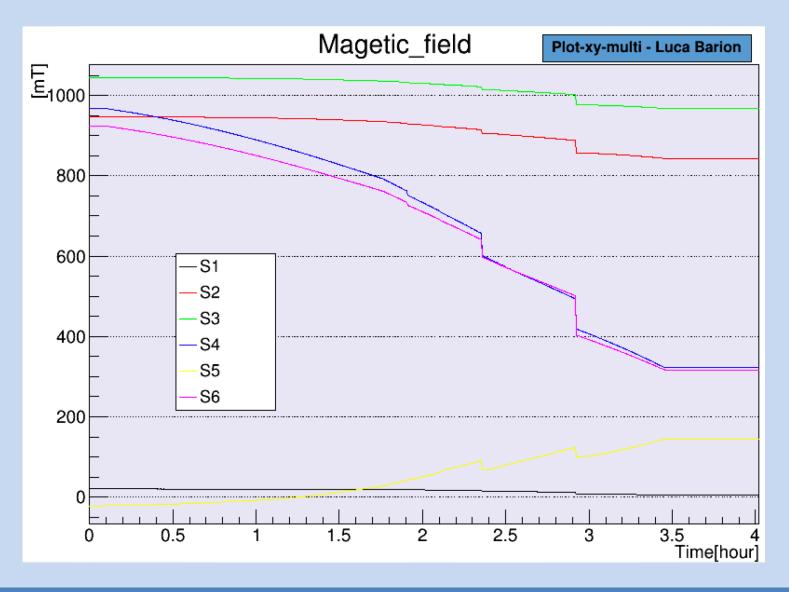
### New Cryostat




10 cm

Cold head

Probe holder


Courtesy: L. Barion

### MgB<sub>2</sub> Magnetization



## MgB<sub>2</sub> Flux Jumps

Exploring relationship with working temperature, field strength, field ramping time, MgB<sub>2</sub> alloy



### The MgB<sub>2</sub> samples

Goal: ✓ Reproducibility (same or equivalent sample)
 ✓ Different grain size and thickness (sample optimization)

UP? Du 23 mm Der, 35 mm F/ Peo Die, 325 une Olino 32.5 min APRO D. BES-Day 22.5 mm with F? One 38.5mm L. SF.05 and 325 min La ST.05 www Deat No. 55 und - 97 5 www ~10 cm Din, 35 min Day 35 mil UPI 5) Puo Din, 300 mm Dinz 30.0 mm mamiltone Deve 38.5 min L. St. 1 min 8) Pipo Dius - 32.5 min Drive 22.5 min Post 38.5 min Lo St. 5 min Dast 38,5 mus L= 97.5 mus Bin, 33 mm Bin, 31 Dout 38.5 mm 1) P? L= 97.05 mm St written 2) P? unitter L= SF. 1 mm Din, 35 Diuz<sup>35</sup> Dout 38.5 mm 3) P-? asymmetrical 3) P? unwritten asymmetrical Ouwritten 6) Pro Din, 32.5 mm Din, 32.5 mm Dave 38.5 mm - \$7.05 mm 4) P160 L= 87.5 mm Din, 32.5 Din, 32.5 Dout 38.05 7 5) P160 L-SF.5 mm Din, 30.6 Dinz 30.6 Dout 38.5 ou plastic 6) P100 . L= 87.05 mm Din, 32.5 Din, 32.5 Dart 38.5 7) P40 L= ST. OS WW Din, 32.5 Dinz 32.5 Dout 38.5 8) Pibo L= ST. 5mm Din, 32.5 Din, 32.5 Dave 38.5

### MgB<sub>2</sub> Performance

### Cylinder #6 P100

| Misura | Data       |   | T(ITC) | Heater<br>(ITC) | T(Rh<br>Fe) | T(Cer<br>nox) | inizo | fine | Ramp<br>a | S2_inizio | S2_fin<br>e | Delta | #F<br>J | Fj_1 | FJ@ |
|--------|------------|---|--------|-----------------|-------------|---------------|-------|------|-----------|-----------|-------------|-------|---------|------|-----|
|        |            |   | [K]    | [%]             | [K]         | [K]           | [A]   | [A]  | [A/s]     | [mT]      | [mT]        | [mT]  |         | [mT] | [A] |
| М      | 2023-01-28 | a | off    | 0               | 8.8         | 15.0          | 110   | 0    | 0.05      | 976       | 92          | 884   | 0       | 0    | -   |
| S      | 2023-01-30 | b | 9      | 1.8             | 9.0         | 14.9          | 0     | 110  | 0.05      | 7         | 26          | 19    | 1       | 9    | 70  |
| М      | 2023-01-30 | d | 11     | 24.1            | 11.7        | 16.4          | 110   | 0    | 0.05      | 975       | 149         | 826   | 1       | 815  | 5   |
| S      | 2023-01-30 | f | 13     | 35.1            | 13.8        | 18.0          | 0     | 110  | 0.05      | 7         | 972         | 965   | 1       | 682  | 73  |
| М      | 2023-01-31 | a | 13     | 35.1            | 13.8        | 18.0          | 110   | 0    | 0.05      | 975       | 274         | 701   | 1       | 692  | 21  |
| S      | 2023-01-31 | b | 17     | 44.6            | 16.0        | 19.4          | 0     | 110  | 0.05      | 7         | 967         | 960   | 1       | 696  | 75  |
| М      | 2023-01-31 | С | 17     | 44.6            | 16.0        | 19.4          | 110   | 0    | 0.05      | 975       | 222         | 753   | 1       | 744  | 15  |
| S      | 2023-02-01 | a | 11     | 24.1            | 11.8        | 16.8          | 0     | 110  | 0.05      | 7         | 25          | 18    | 1       | 9    | 70  |
| М      | 2023-02-01 | b | 11     | 24.1            | 11.8        | 16.8          | 90    | 0    | 0.05      | 852       | 829         | 23    | 1       | 15   | 13  |
| М      | 2023-02-01 | С | 11     | 24.1            | 11.8        | 16.8          | 110   | 0    | 0.05      | 977       | 326         | 651   | 1       | 642  | 27  |
| М      | 2023-02-01 | d | 11     | 24.1            | 11.8        | 16.8          | 110   | 0    | 0.01      | 977       | 311         | 666   | 1       | 657  | 24  |
| S      | 2023-02-02 | a | off    | 0               | 9.0         | 15.6          | 0     | 110  | 0.05      | 7         | 975         | 968   | 2       | 5    | 65  |
| М      | 2023-02-02 | b | 9      | 1.9             | 8.9         | 15.6          | 110   | 0    | 0.05      | 975       | 957         | 18    | 1       | 10   | 32  |

The MgB<sub>2</sub> sample could sustain (or screen) the wanted field, but not (yet) in a reproducible way Observed for all samples except the first that came as leftover from a past development\*

\* going to contact the manufacturer

### Conclusions

**RGH:** a challenging but high-impact group of experiments

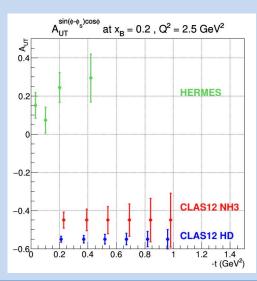
Moving towards a realistic experimental configuration that fulfills the PAC condition for approval

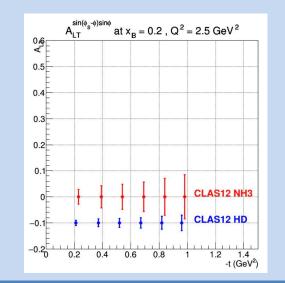
- forward CLAS12 detector with RICH
- upgrades in tracking systems
- existing or optimized target magnet
  - study background containment
  - assess physics reach

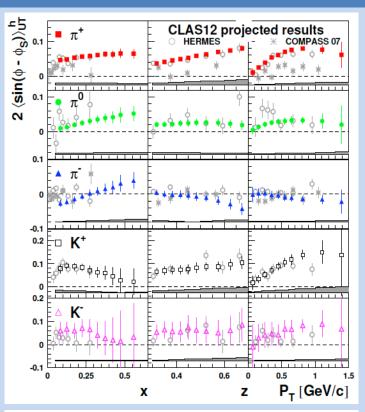
Working to present a viable configuration to the Lab management

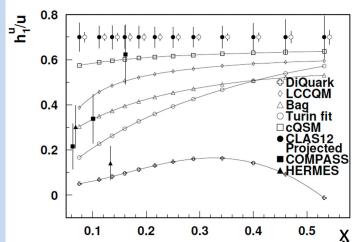
You are all welcome to join:

Mailing list: <u>clas12 rgh@jlab.org</u> Wiki page: https://clasweb.jlab.org/wiki/index.php/Run\_Group\_H


### **RGH Physics Goals**

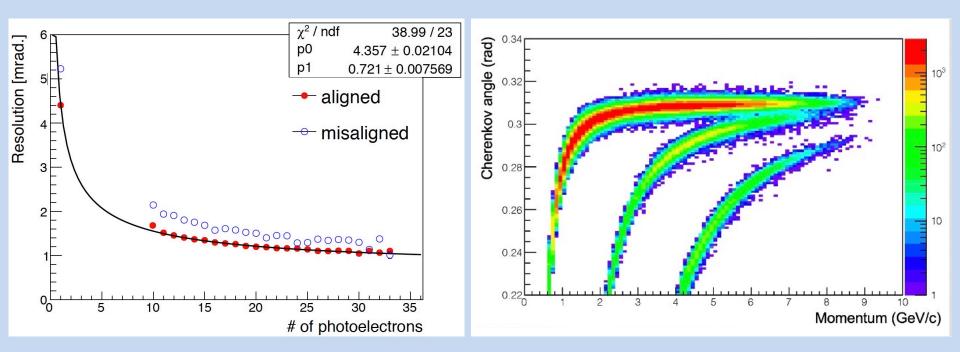

| Experiment | Contact        | Title                                                                                                          | Rating | PAC days |
|------------|----------------|----------------------------------------------------------------------------------------------------------------|--------|----------|
| C12-11-111 | M. Contalbrigo | Transverse spin effect in SIDIS at 11 GeV<br>with a transversely polarized target<br>using CLAS12              | A      | 110      |
| C12-12-009 | H. Avakian     | Measurement of transversity with di-<br>hadron production in SIDIS with a<br>transversely polarized target     | A      | 110      |
| C12-12-010 | L. Elauadrhiri | Deeply Virtual Compton scattering at 11<br>GeV with transversely polarized target<br>using the CLAS12 detector | A      | 110      |


Moving from ideal HD-ice to realistic NH<sub>3</sub> target: conservative assumptions on luminosity and acceptance (recoil, wide angles)


Even @  $10^{33}$  cm<sup>-2</sup> s<sup>-1</sup> projections show that RGH remains unique for wide-range A<sub>UT</sub> towards e.g. GPD E, transversity and Sivers TMDs

Working is ongoing to optimize the new configuration





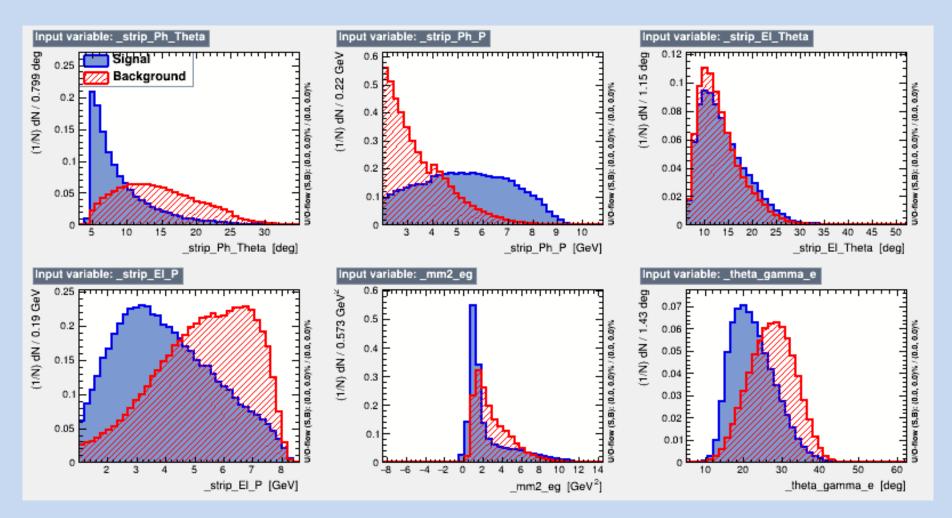





### **Angular Resolution**

The goal of a pion-kaon  $4\sigma$  separation at 8 GeV/c requires a resolution of 1.5 mrad<sup>\*</sup> (\*forward region, less stringent requirements at large angles)



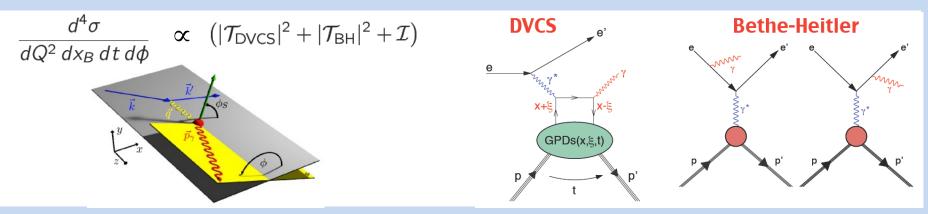

In line or better with respect the TDR targets:

- single-photon resolution of 4.5 ns
- number of photons around 18 for direct imaging

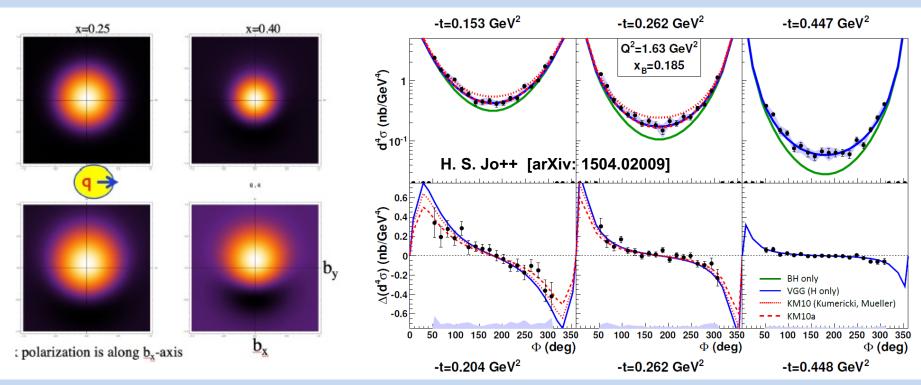
Training of a MVA analysis based on ML techniques

Signal: DVCS simulation in RGH config.

Background: piO simulation as DVCS in RGH config.



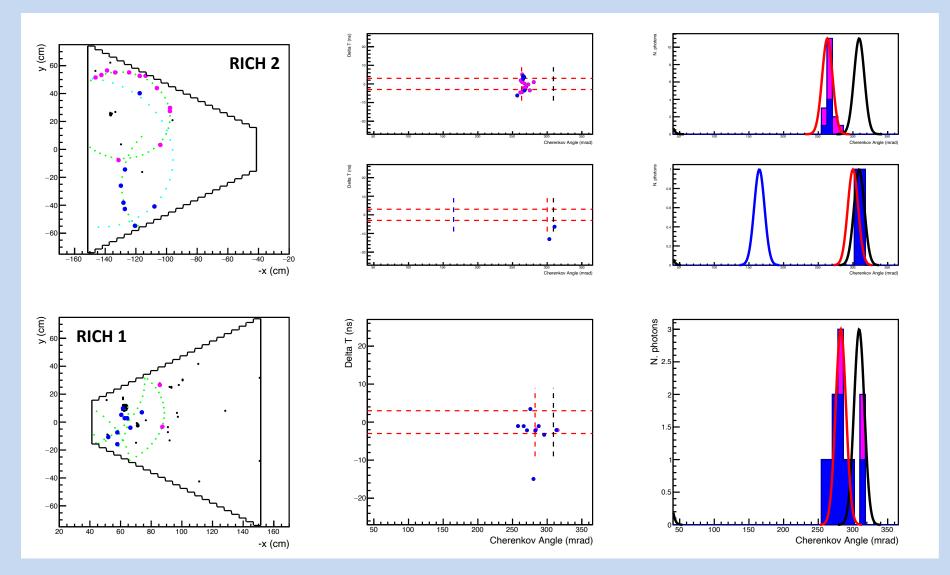

### **Exclusive Events**


Results similar to RGA analysis note Classifier response assessment with  $\chi^2$  / ndf 22.46 / 10 0.3  $0.1807 \pm 0.0049$ data from RGA, to be extended to RGB and RGC а b  $-0.1489 \pm 0.0426$ 0.2 alternative background subtraction methods 0.1 Background rejection versus Signal efficiency Input variable: t Ph ALU (1/N) dN / 0.188 GeV<sup>2</sup> rejectio 1.2 Background -0. Prelimin 0.8 -0.2 0.6 0.6 0.5 -0.3-0 0.4 150 50 200 250 100 300 350 0.4 MVA Method: 0.2 0.3 - data - bin 1 0.2 -10 -6 -6 -3 -2 0.9 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 1 \_t\_Ph [GeV<sup>2</sup>] Signal efficiency BSA No reweighting TMVA overtraining check for classifier: BDT With reweighting 0.2 xb / Nb (N/1) з Signal (test sample) Signal (training sample) Background (test sample) Background (training sample) 2.5 Kolmogorov-Smirnov test: signal (background) probability = 0.429 (0.733) C 2 -0.2 1.5 -0.4 0.5 –0.6E 0 0.6 80 120 160 200 240 280 320 360 -0.2 0.2 0 0.4 0 40 -0.4 **BDT** response

CLAS Coll. meeting, 21<sup>st</sup> March 2023, CNRS Paris

### Nucleon 3D: DVCS




Information on the real and imaginary part of the QCD scattering amplitude



#### Contalbrigo M.

# Run Group C

Example of 3 particle event into two RICHes (no calibration)



Contalbrigo M.