JLab Physics Program & Future Initiatives

Patrizia Rossi

Biennial Workshop of the APS Topical Group on Hadronic Physics (GHP2023) Minneapolis, April 12-14, 2023

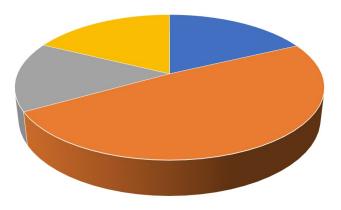
TJNAF is managed by Jefferson Science Associates for the US Department of Energy

Talk Outline

The 12 GeV Nuclear Physics Program

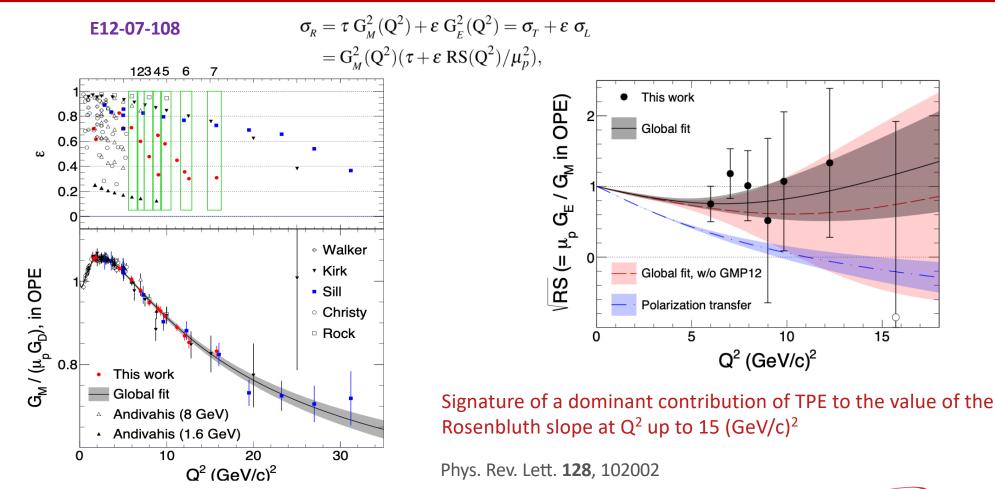
- Some highlights of published results and current running program (with apologies to all I couldn't include!)
- Near & longer-term physics program

Look to the future


- CEBAF energy upgrade
- Positron beam

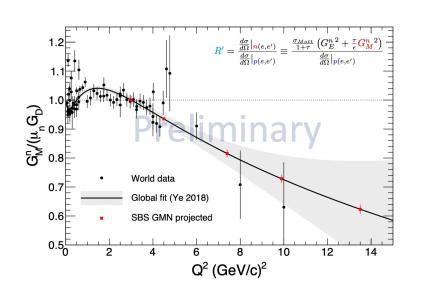
Jefferson Lab and CEBAF

Approved 12 GeV program by PAC days


• Probe the structure of matter

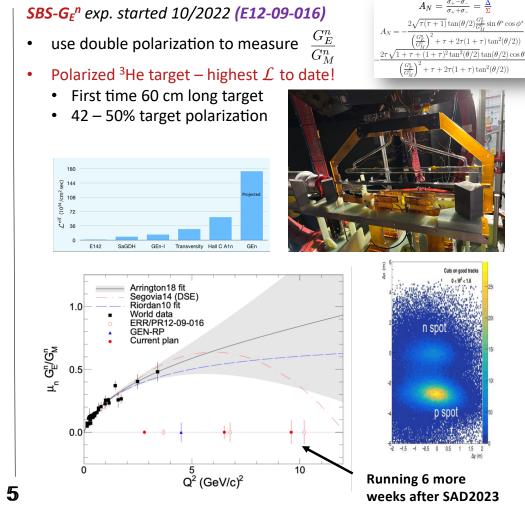
Complex **non-pQCD** problem which demands different approaches and measurements to access multiple observables

• Discover evidence for physics beyond the standard model


Hadron Spectra 1D-3D Nucleon Structure Hadrons & Cold Nuclear Matter Test of SM & Fundamental Sym. Jefferson Lab

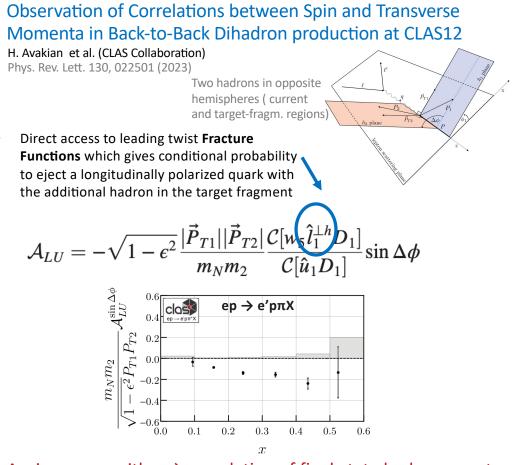
$2-\gamma$ Effects in Elastic e-p Scattering in Hall A

Hall A SBS Program: unprecedented access to all nucleon FFs at high Q²


SBS-G_Mⁿ exp. successfully completed in 2/ 2022 (E12-09-019)

• Precision of the highest Q² data point (13.5 (GeV/c)²) is expected to stay unmatched for years to come

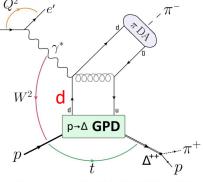
Neutron two-photon exchange (nTPE) (E12-20-010)

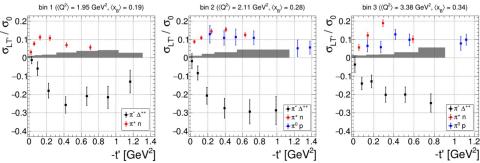

- Two measurements at same Q², 2 values of $\boldsymbol{\epsilon}$

Preliminary results from both exps expected by Summer 2023

Hall B provides First-ever Measurements

•


 A_{LU} increases with x \rightarrow correlation of final-state hadrons most significant in the valence quark region


First measurement of hard exclusive π - Δ ++ electro-production

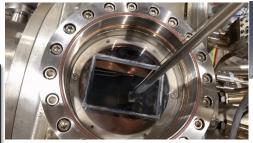
BSA off protons

S.. Diehl et al. (CLAS Collaboration) arXiv:2303.11762 [hep-ex]

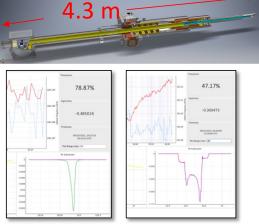
- Provides access to p-∆ transition GPDs
- Provides access to the d-quark content of the nucleon

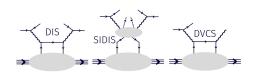
BSA clearly negative and ~ 2 times larger than for the hard exclusive π^+/π^0 production \rightarrow Polarized u quarks (π^+n , π^0p) has positive asymmetry, d quarks ($\pi^-\Delta^{++}$) negative asymmetry

RG-C: a Comprehensive Program w Longitudinally Polarized NH₃, ND₃ targets in Hall B



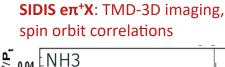
Testing in Target Lab, March 2022


Protons and deuterons (NH₃ & ND₃) dynamically polarized at 1 K and 5 T



Installation in Hall B, June 2022

Rapid exchange of target samples

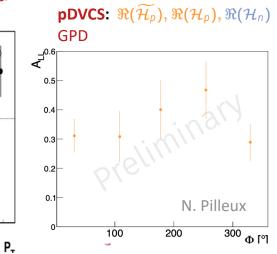


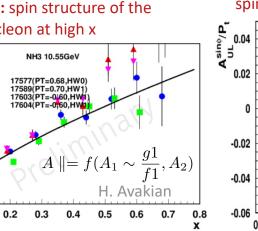
- Longitudinally pol. NH₃ and ND₃ targets
- 10.5 GeV highlypolarized e- beam

DIS: spin structure of the nucleon at high x ((**1** (**1** (**1 P B P D** (**1**))/(**N - N**)/(**1 P B P D** (**1**))/(**N - N**)/(**1 P D** (**1**)) NH3 10.55GeV

0

0.1

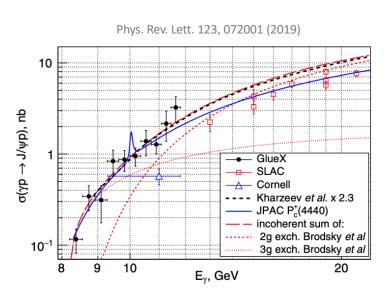

0.25


H. Avakian

1

0.75

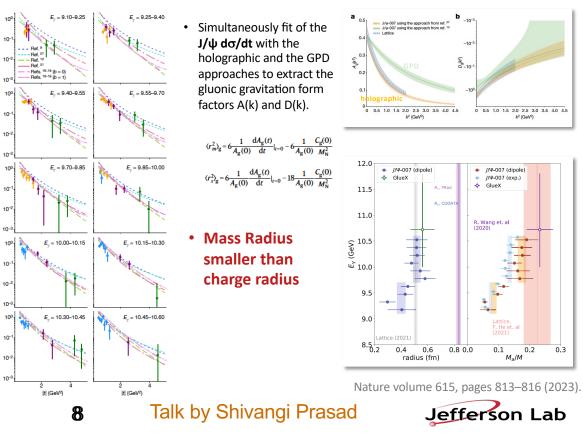
0.5



J/ψ Photoproduction at threshold

Hall D - GlueX

- Two-gluon exchange model doesn't reproduce $\boldsymbol{\sigma}$
- no evidence of 5quark \rightarrow model-dependent U.L. on on the branching fraction of the LHCb P_c⁺ states

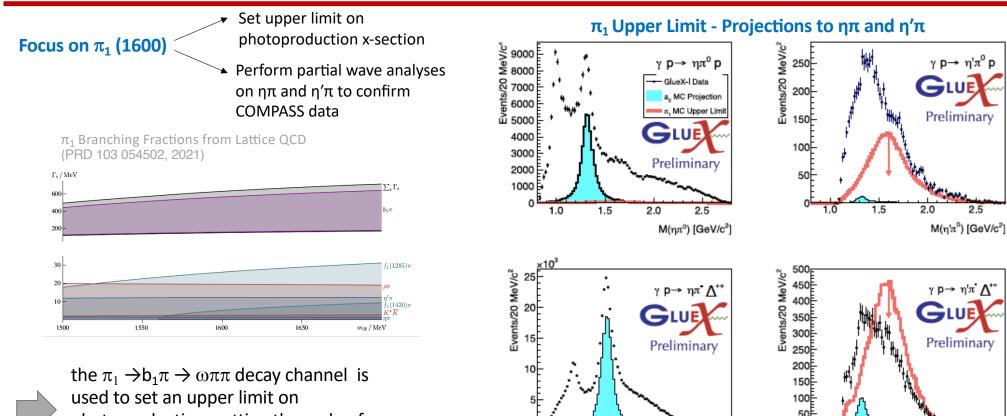


Hall C (E12-16-007)

GeV⁻²)

dr) dt (nb G

- measured 5x more statistics \rightarrow set more stringent limit on $\sigma(\gamma p \rightarrow P_c \rightarrow J/\psi p)$
- Data used to determine the gluonic gravitational form factors of the proton


New nuclear data challenge theory – Hall C

Phys. Rev. Lett. 126, 082301 Phys. Rev. Lett. 125, 262501 (2020) P_p[GeV/c] **CD-BONN** theory 10 (magenta) explains data 35° for $p_r < 600$ 0.9 Prediction with Color Transparency 10Transparency 0.8 • None of the 0.0 0.20.4 $\sigma_{\rm red}/\sigma_{\rm red}^{\rm CD-Bonn~PWIA}$ calculations, 0.7 0 including the CD-20(b) 0.6 45° BONN theory, can explain data 0.5 Data has flat dependence 10 for $p_r > 0.6$ **No Color Transparency !** 0.0 0.20.40.4 0.60 || Completed This experiment 0.3 CD-Bonn PWBA 5.0Ř 75 CD-Bonn I (c)experiment to ò Bates Paris PWIA 0.2 Paris T SLAC Constant value D explore if trend A 18 PWBA 2.5A 18 I Glauber + CT(I, III) JLab 95/96 continues to $p_r >$ 0.1 W C2 PWBA W C2 I JLab 99 Relativistic Glauber + C1 A Data 1.1 0.0xperiment (C) 0 12 0.2 0.6 0.8 10 14 16 20 0.00.41.01.22 18 6 $Q^2[(GeV/c)^2]$ $p_{\rm r} \; ({\rm GeV/c})$ 9 **Jefferson Lab**

Ruling out color transparency in quasi-elastic ${}^{12}C(e,e' p)$ up to Q² of 14.2 (GeV/c)²

Probing the Deuteron at Very Large Internal Momenta

Search for Hybrid Mesons at GlueX

photoproduction, setting the scale of possible contributions in $\eta\pi$ and $\eta'\pi$

• π_1 not a large fraction of $\eta\pi$ • π_1 could saturate $\eta'\pi^-$

2.0

M(ηπ) [GeV/c²]

2.5

1.5

1.0

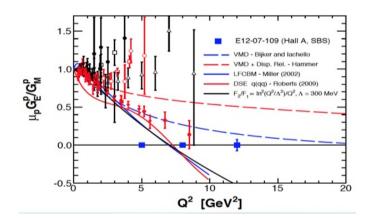
distribution

2.0

2.5

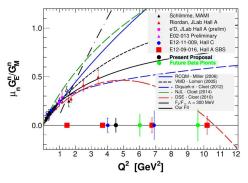
M(η'π') [GeV/c²]

1.5


1.0

Talk by W. Imoehl

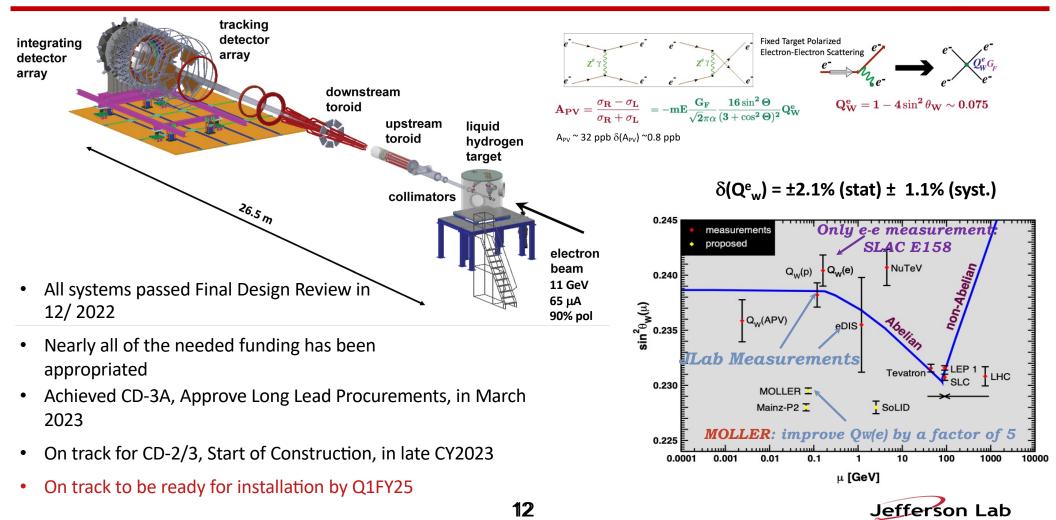
Hall A Preparing for the Future: SBS → MOLLER →SoLID


E12-07-109

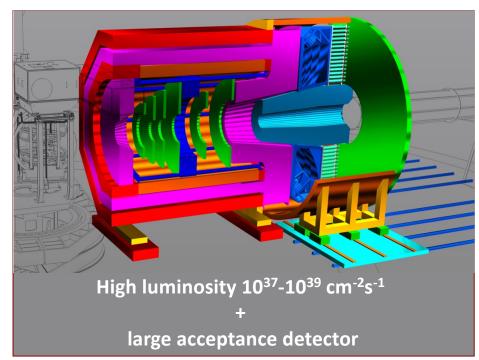
- Measurement of the ratio G_E^p / G_M^p in a wide range of momentum transfer Q² using the polarization transfer method
- SBS G_E^p / G_M^p exp. currently scheduled -Installation start in Fall 2023

E12-17-004

- Measurement of the ratio G_Eⁿ / G_Mⁿ using the two-recoil polarization technique of a polarized beam on an unpolarized LD₂ target
 - Change-exchange np→pn (copper analyzer)
 - Conventional np-np (plastic analyzer)
- SBS G_Eⁿ / G_Mⁿ exp. currently scheduled after G_E^p / G_M^p



• Approved SBS SIDIS (TMDs), TDIS (meson structure) exps. ?

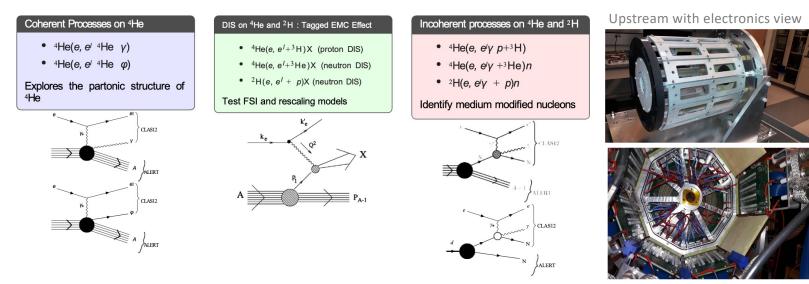


MOLLER: World-leading Measurement of e-e PV MQLLER

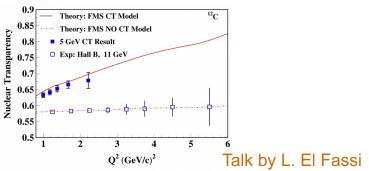
Solenoidal Large Intensity Device (SoLID)

13

- Precision 3D momentum imaging in the valence quark region
- BSM searches complementary to Moller
- Exploring the origin of the proton mass and gluonic force in the non-perturbative regime



Hall B: Nuclear Experiments


new Double-Target system

Suite of experiments using nuclear targets: D, C, Al, Sn, Cu, Pb

- Study of Color Transparency in Exclusive Vector Meson Electro-production off Nuclei ٠
- Quark Propagation and Hadron Formation ٠
- A Low Energy Recoil Tracker (ALERT): A ٠ comprehensive program to study the partonic nuclei & nuclear effects

July 2023-Nov 2024

Hall C Neutral Particle Spectrometer (NPS) Program

<u>e⁻ beam</u>

E12-13-010 - E12-06-114 - E12-13-007

- Exclusive Deeply Virtual Compton on proton
- SIDIS p(e,e',p⁰) cross section. Map the transverse momentum dependence.
 E12-22-006
- Exclusive Deeply Virtual Compton on deuteron Subtract the proton data from deuteron data to get neutron

<u>γ beam</u>

E12-14-003

- Wide-angle Compton Scattering E12-14-005
- Wide Angle Exclusive Photoproduction of π^0 mesons

Being Installed -Start program in July 2023

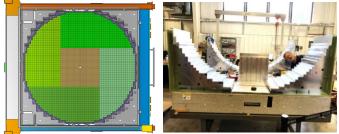
Miktat Imre and Carlos Domingues installing PMT/bases assemblies

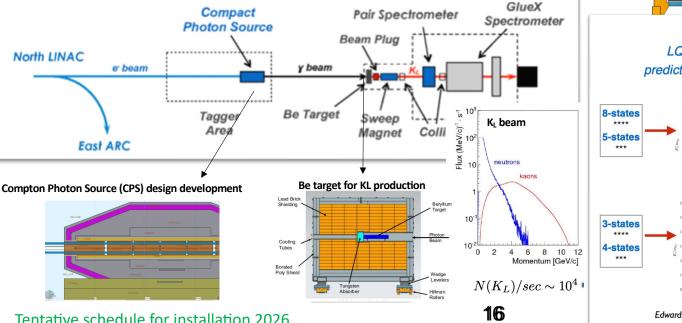
Neutral Particle Spectrometer (NPS) : Magnet with calorimeter

Detector - frame

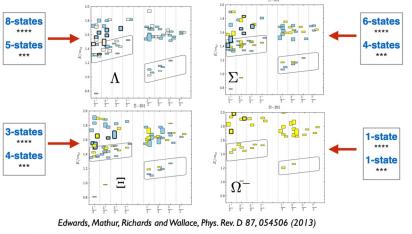
- 1080 Lead-Tungstate blocks in Calorimeter to detect $\gamma \& \pi^0$
- NPS attached to SHMS carriage to allow easy angle change. The calorimeter is on rails. Remove the SHMS HB magnet

Hall D: GlueX-II – JEF - KLF

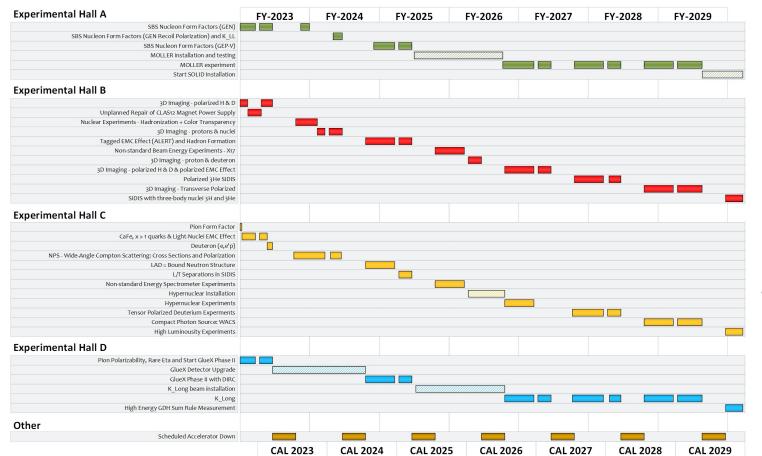

Jefferson Lab Eta Factory (JEF): a unique probe for QCD and BSM physics


- Probe a leptophobic dark B-boson in 140-550 MeV range via $\eta \rightarrow B\gamma \rightarrow \pi^{0}\gamma\gamma$
- Directly constrain CVPC new physics via $\eta \rightarrow 3\gamma$
- Test the role of scalar dynamics in ChPT through $\eta \rightarrow \pi^0 \gamma \gamma$
- A clean determination of the light quark mass ratio via $\eta \rightarrow 3\pi$

K-long Facility: Spectroscopy in K_{LONG} beam


Start Program in 2024

Upgraded e.m. calorimeter in preparation



Hyperon Spectroscopy LQCD in addition to already known states predicts many more including hybrids (thick bordered)

Tentative schedule for installation 2026

Extended Experimental Schedule/Draft

- SoLID installation could start ~mid-FY29
- 86% complete in FY29 without SoLID, 70% complete with SoLID (assuming optimal running operation)

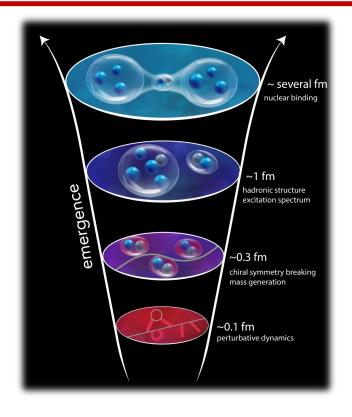
...not including new proposals

- A new NPES schedule is about to be released
 - Schedule to March 2025
 - Assumes 33 weeks of physics running annually

Feasible, Cost effective, Innovative Path from e⁺ to 22 GeV

Capitalize on recent science insights and US-led accelerator science and technology innovations to develop a **staged program at the luminosity frontier**

- CEBAF @ 22 GeV
- Positron beam


- INJ to CEBAF
- Starting with 12 GeV CEBAF
- NO new SRF (1.1 GeV per linac)
- New 650 MeV injector
 - Remove the highest recirculation pass (Arc 9 and A) and replace them with two FFA arcs including timeof-flight chicane

650 MeV

Recirculate 4.5+6times to get to 22 GeV

- Positrons (e+) in the LERF with transport to CEBAF
- Injection energy upgrade for 650 MeV Electron (e-) in LERF

Why CEBAF @ 22 GeV?

Emergence of hadron structure

Complex non-pQCD problem which demands different approaches and measurements to access multiple observables

What a 22 GeV upgrade will bring:

- some important thresholds would be crossed → charm, nuclear distances, in fundamental symmetries, etc..
- An energy window which sits between JLab @ 12 GeV and EIC

→ test and validation of our theory from lower to higher energy

• A rich physics program is under development, leveraging on existing or already-planned infrastructure and on the <u>uniqueness of CEBAF HIGH LUMINOSITY</u>

Science Case for an Energy Upgrade

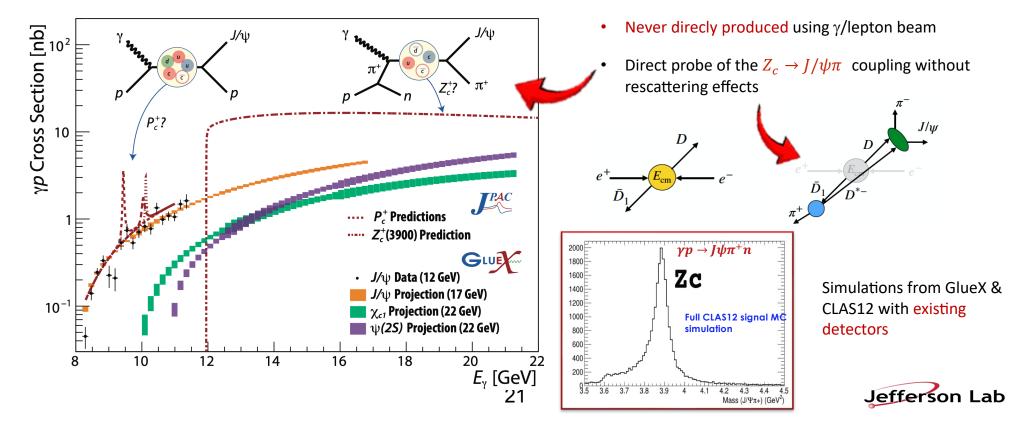
Science at the Luminosity Frontier: JLab at 22 Gev January 23-25, 2023

- Spectra and structure of heavy and light hadrons asprobes of QCD
- Sea and valence partonic structure and spin
- Form Factors, Generalized Parton Distributions and Energy-Momentum Tensor
- https://www.jlab.org/conference/luminosity22gev

- Fragmentation, Transverse Momentum and Parton correlations
- Hadron-quark transition and nuclear dynamics at extreme conditions
- Low-energy tests of the Standard Model and Fundamental Symmetries

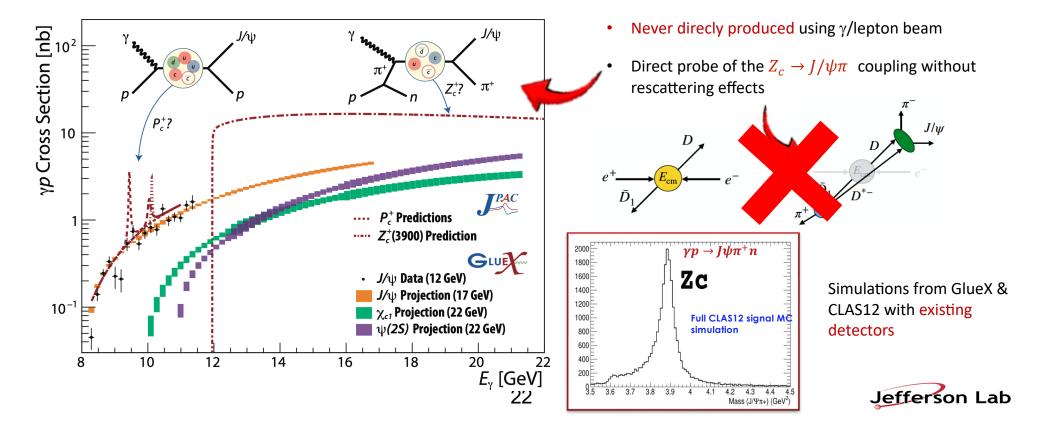
- Physics case summarized in a short document sent to the LRP writing committee
- Longer document is in preparation
 - It will be circulated within the community
 - Goal is to post it on
 (ArXiv) by the end of May

APS April Meeting 2023 Apr 15 & 16, 2023


<u>B15/K16 Mini-Symposium:</u> Opportunities with Jlab Upgrades in Energy, Luminosity and a Positron Beam

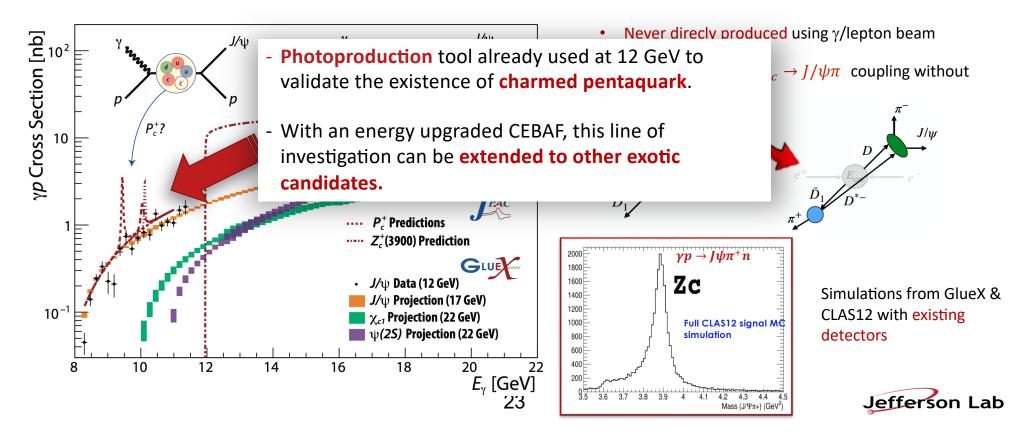
Spectroscopy of Exotic States with cc

Photoproduction of hadrons with charm quarks: <u>new tool for discovery in QCD</u>


- → potentially decisive information about the nature of some 5-quark and 4-quark candidates
- → a unique method to probe the structure of the proton

Spectroscopy of Exotic States with cc

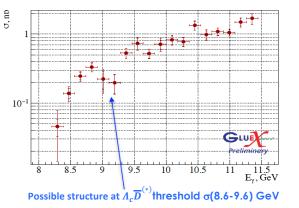
Photoproduction of hadrons with charm quarks: <u>new tool for discovery in QCD</u>


→ potentially decisive information about the nature of some 5-quark and 4-quark candidates
 → a unique method to probe the structure of the proton

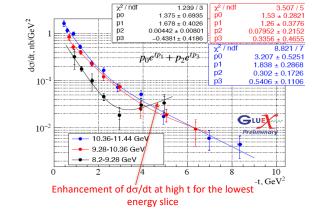
Spectroscopy of Exotic States with cc

Photoproduction of hadrons with charm quarks: <u>new tool for discovery in QCD</u>

→ potentially decisive information about the nature of some 5-quark and 4-quark candidates
 → a unique method to probe the structure of the proton

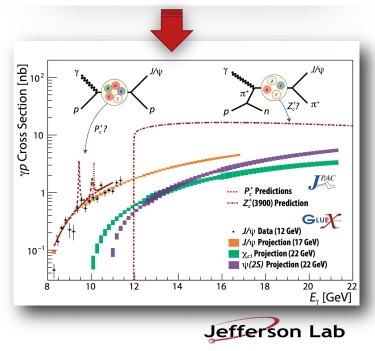

J/ψ photoproduction near threshold

...based on some assumptions


(mainly 2-g exchange)

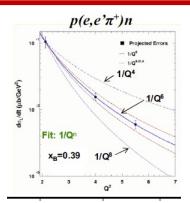
Used to study important aspects of the gluon structure of the proton

- gluon GPD
- mass radius of the proton,
- anomalous contribution to the proton mass.

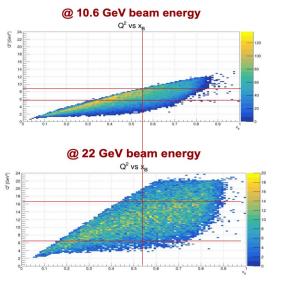


• CANNOT be explained by t-channel (GLUON EXCHANGE) alone

• Can have contribution from open-charm exchange to both σ and $d\sigma/dt$ at high t

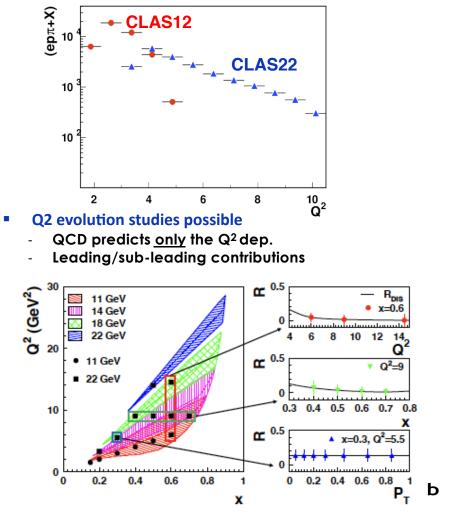

Talk by L. Pentchev

Need precise measurements to develop accurate theoretical models to understand the mechanism! **POSSIBLE** with GlueX at 17+ GeV



3D Structure of the Nucleon

25



 The <u>relevant</u> Q² range for the Qⁿ scaling test (GPD formalism) significantly increase with 18/22 GeV beam

A combined 11 and 22 GeV SIDIS program

 will provide a unique determination of the ratio of longitudinal to transverse photon SIDIS cross sections essential to properly understand SIDIS multiplicities, Sivers and Collins effects,...

Positron Program White Paper

Experiment		Measurement Configuration			Beam Parameters					
Label	Short	Hall	Detector	Target	Polarity	p	P	Ι	Time	PAC
(EPJ A)	Name	Han	Detector	Target	Folarity	$({ m GeV}/c)$	(%)	(μA)	(d)	Grade
Two Photon Exchange Physics										
57:144	H(e, e'p)	В	$CLAS12^+$	H_2	$+/{s}$	2.2/3.3/4.4/6.6	0	0.060	53	
57:188	$H(\vec{e}, e'\vec{p})$	Α	ECAL/SBS	H_2	$+/{p}$	2.2/4.4	60	0.200	121	
57:199	r_p	В	PRad-II	H_2	+	0.7/1.4/2.1	0	0.070	40	
	r_d	Б		D_2	+	1.1/2.2	0	0.010	39	
57:213	$\vec{\mathrm{H}}(e,e'p)$	Α	BB/SBS	$N\overrightarrow{H}_3$	$+/{s}$	2.2/4.4/6.6	0	0.100	20	
57:290	H(e, e'p)	Α	HRS/BB/SBS	H_2	$+/{s}$	2.2/4.4	0	1.000	14	
57:319	SupRos	Α	HRS	H_2	$+/{p}$	0.6 - 11.0	0	2.000	35	
58:36	A(e, e')A	Α	HRS	He	$+/{p}$	2.2	0	1.000	38	
Nuclear Structure Physics										
57:186	p-DVCS	В	CLAS12	H_2	$+/{s}$	2.2/10.6	60	0.045	100	C2
57:226	n-DVCS	В	CLAS12	D_2	$+/{s}$	11.0	60	0.060	80	
57:240	p-DDVCS	Α	SoLID^{μ}	H_2	$+/{s}$	11.0	(30)	3.000	100	
57:273	He-DVCS	В	CLAS12/ALERT	$^{4}\mathrm{He}$	$+/{s}$	11.0	60			
57:300	p-DVCS	\mathbf{C}	SHMS/NPS	H_2	+	6.6/8.8/11.0	0	5.000	77	C2
57:311	DIS	A/C	HRS/HMS/SHMS		$+/{s}$	11.0				
57:316	VCS	\mathbf{C}	HMS/SHMS	H_2	$+/{s}$		60			
Beyond the Standard Model Physics										
57:173	C_{3q}	А	SoLID	D_2	$+/{s}$	6.6/11.0	(30)	3.000	104	D
57.959	LDM	В	PADME	\mathbf{C}	+	11.0	0	0.100	180	
57:253			ECAL/HCAL	$PbW0_4$			0	0.100	120	
57:315	CLFV	Α	SoLID^{μ}	H_2	+	11.0				
Total (d)								1121		

 $CLAS12^+ \equiv CLAS12$ implemented with an Electromagnetic Calorimeter in the Central Detector

 $SoLID^{\mu} \equiv SoLID$ complemented with a muon detector

+ Secondary positron beam


 $-_s$ Secondary electron beam

 $-_p$ Primary electron beam

(30) Do not require polarization but would take advantage if available at the required beam intensity

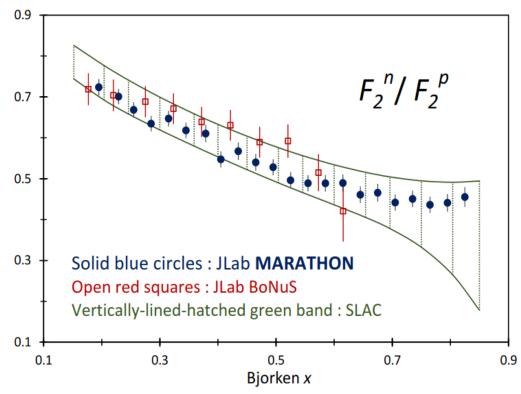
Talk by D. Higinbotham

26

https://doi.org/10.1140/epja/910050-6

Conclusions

- The 12 GeV era is going strong
 - More than 1/3 of experiments have been completed
 - High-profile results are emerging from the program
- CEBAF's approved program extends into 2030s (assuming ~30 weeks OPS/year)
 - 86% complete in FY29 without SoLID
 - 70% complete with SoLID
- CEBAF will remain a critical facility for fixed target electron scattering at high luminosity
 - Laying the groundwork for an exciting role for CEBAF in the EIC era
 - o CEBAF @ 22 GeV
 - o Positron Beam
- A rich physics program for "Future CEBAF" is under development, leveraging on existing or already-planned infrastructure and on the uniqueness of CEBAF HIGH LUMINOSITY



Backup Slides

PDF at large x : F_2^n/F_2^p

New generation of experiments at JLab focused on high x

MARATHON (Hall A) Minimizes bias from nuclear effects by measuring ³He/³H ratios

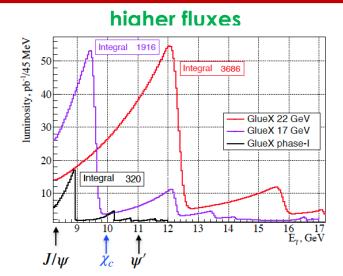
Phys. Rev. Lett. 128, 132003 (2022)

F_2^n/F_2^p predicted by models

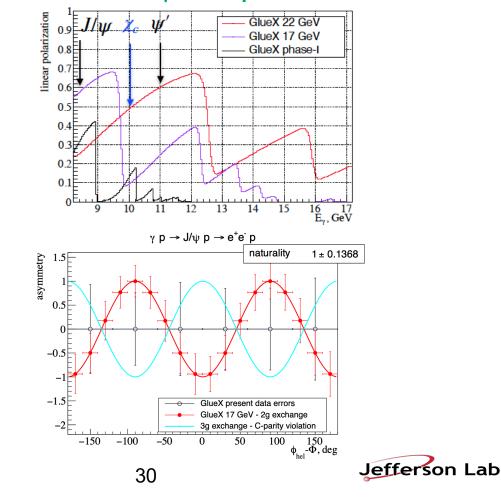
Model	F_2^n/F_2^p			
SU(6)	2/3			
NJL	0.43			
DSE-1	0.49			
CQM	0.25			
pQCD	3/7			

BONUS (Hall B) Minimizes bias from nuclear effects by using fixed target tagged DIS

Some publishable results expected by end of Summer or early Fall of 2023


E12-10-002 (Hall C)

29


wide x range (from 0.2 to 1) with small statistical and systematic uncertainties

 J/ψ photo-production and other charmonium states in Hall D

Increased γ linear polarization

