International workshop on CLAS12 physics and future perspectives at JLab

J/ψ Photoproduction Near Threshold

Mariana Tenorio Pita

Outline of the talk

- 1. Motivation
- 2. Description of the Experiment
- 3. Tagged Analysis Framework
- 4. Current and Future Work
- 5. Conclusion

J/ψ photoproduction near threshold

- The production process of the J/ψ meson is sensitive to gluonic form factors that describe the distribution of color charge in the proton
- Near threshold, $E_{\gamma} > 11$ GeV, the momentum transfer is large and all valence quarks must act coherently, exchanging energy in the form of gluons.
- We can relate the J/ψ photoproduction cross-section to the elastic J/ψ -Nucleon scattering via the Vector Meson Dominance (VMD) model.
- In the VMD model the photon fluctuates to a $q\bar{q}$ pair that scatters off the nucleon and forms the outgoing vector meson

A. Ali, et. al. (GlueX Collaboration), Phys. Rev. Lett. 123, 072001 (2019) 3

Proposed Models for J/ψ photoproduction

- and gluons in the proton.
- expected to dominate.

A. Ali, et. al. (GlueX Collaboration), Phys. Rev. Lett. 123, 072001 (2019) ⁴ S. Brodsky, E. Chudakov, P. Hoyer, J. Laget, Phys. Lett. B. 498, 23 (2001)

Pentaquark states P_{c}

- The LHCb collaboration reported that the $P_c(4450)^+$ structure in the decay channel $P_c^+ \rightarrow J/\psi p$, consist on two narrow overlapping peaks $P_{c}(4440)^{+}$ and $P_{c}(4457)^{+}$ at 4440 and 4457 MeV respectively
- It is expected that these states can be produced in the s-channel through the photoproduction process $\gamma + p \rightarrow P_c \rightarrow J/\psi + p$
- The calculation of the yield of this process will be useful for detailed studies of the production of pentaquark resonances.

$$\sigma(\gamma + p \rightarrow P_c \rightarrow J/\psi + p) = \frac{2J + 1}{4}$$

 $-Br(P_c \rightarrow \gamma + p)Br(P_c \rightarrow J/\psi + p)1.1 \times 10^{-27} \text{ cm}^2$

R. Aaij et al. Phys. Rev. Lett., 122,22, (2019). ₅ V. Kubarovsky and M. B. Voloshin, Phys. Rev. D ., 92, 031502, R, (2015).

The experiment

• For this analysis the RG-A Fall 2018 and Spring 2019 Pass1 data is presented. • Fall 2018: Inbending and Outbending configurations, 10.6 GeV Spring 2019: Inbending configuration, 10.2 GeV

Tagged Analysis Reaction

The reaction to study is

$$ep \rightarrow e'J/\psi p' \rightarrow e'e^+e^-X$$

- corresponds to the recoil proton and will be identified in the missing momentum analysis.
- We have other two topologies that we can explore:
 - ер –
 - ер –

• Where e^+ and e^- are measured in the Forward Detector, e' is measured in the Forward Tagger and X

$$e'e^{-}p'X \\ e'e^{+}p'X$$

Tagged Analysis Framework Analysis cuts

- Electron e⁻
 - 1.p > 1.95 GeV/c
 - 2. $E_{PCAL} > 0.07 \text{ GeV}$
 - 3. $V_{PCAL} > 9 \text{ cm}$
 - 4. $W_{PCAL} > 9 \text{ cm}$
 - 5. $-8 < V_7 < 4$ cm
- Events with vertex time difference $|v_{t_{e^{-}}} v_{t_{e^{+}}}| \le 1$ were accepted
- Radiative photons with θ coincidence with $|\Delta \theta| < 0.7$ for energy loss correction

 $ep \rightarrow e'J/\psi p' \rightarrow e'e^+e^-(p')$

- Positron e^+
 - 1. p > 1.95 GeV/c
 - 2. $E_{PCAL} > 0.07$ GeV
 - 3. $V_{PCAL} > 9 \text{ cm}$
 - 4. $W_{PCAL} > 9 \text{ cm}$
 - 5. $SF_{EC} \ge (0.195 SF_{PCAL})$

Tagged Analysis Framework Selection of J/ψ events

Events that contain one electron in the selected

 $ep \rightarrow e'J/\psi p' \rightarrow e'e^+e^-(p')$

Events that contain one electron in the Forward Tagger and have $|\Delta t_{\nu}| < 2$ ns are

')

$ep \rightarrow e'J/\psi \ p' \rightarrow e'e^+e^-(p')$ **Tagged Analysis Framework Selection of** J/ψ events - Missing momentum analysis

- The missing four-momentum is defined as $p_X = p_e + p_p p_{e^-} p_{e^+} p_{e'}$
- Events with a missing mass between 0.7 GeV and 1.2 GeV are selected for the final analysis.

Tagged Analysis *J/ψ* events

 $ep \rightarrow e'J/\psi \ p' \rightarrow e'e^+e^-(p')$

$$M^2(e^-e^+) = (p_{e^-} + p_{e^+})^2$$

')

Tagged Analysis Hadronic Mass

 $ep \rightarrow e'J/\psi p' \rightarrow e'e^+e^-(p')$

- For this distribution, we consider events that fall into the mass range $3.0 < M(e^+e^-) < 3.2 \text{ GeV}$
- The hadronic mass corresponds to the mass of the • pentaquark P_c . We expect to see their existence in this distribution.
- The next phase of the analysis is to define the W-binning, • taking into account the two different beam energies of the data sets, to construct the hadronic mass distribution.

$$W = \sqrt{m_p^2 + 2m_p E_\gamma - Q^2}$$

$$E_{\gamma} = E_{beam} - E_{e'} \qquad Q^2 = 2E_{beam}E_{e'}(1 - \cos(\theta_{e'}))$$

Next Steps Extraction of cross-section

the transfered momentum squared, t

$$\frac{d\sigma}{dWdQ^2dt} = \frac{N_{J/\psi}(W, Q^2, t)}{L \cdot Br \cdot \eta} \frac{1}{\Delta W \Delta Q^2 \Delta t}$$

- Where $L = N_e \cdot N_p$, Br = 0.06 and η is the detector efficiency.
- dependencies are limited to one variable by integrating over the others.

$$\frac{d\sigma_i}{dW} = \frac{Y_i}{L \cdot Br} \frac{1}{\Delta W} \qquad \qquad Y_i = \sum_{j=1}^{N_{J/\psi}^i} \frac{1}{\eta_j}$$

and would represent an increase in acceptance.

The cross-section depends on the total center of mass energy, W, the exchange photon virtuality Q^2 and

When we have low statistics, the width of the kinematic variables ($\Delta W, \Delta Q^2, \Delta t$) becomes large and the

Finally, we can explore the other two topologies that are complementary to the reaction presented here

Thank you!

