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Overview

• Neutron Detection efficiency
• Development of neutron veto

algorithm
• Early stages
• Development of ML with 

• ML neutron detection with RGM
data
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Detection Efficiency: early work
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ℎ 𝑒, 𝑒!𝜋"𝑛

Chatagnon thesis, CLAS12 NIM paper

RGK data, 7.5 GeV



Detection Efficiency: Approach

• Channels used:  ℎ 𝑒, 𝑒!𝜋"𝑛 ,  𝑑(𝑒, 𝑒!𝑝#$𝑛),  𝑑(𝑒, 𝑒!𝑝%$𝑛)
• Background subtraction
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Detection Efficiency: results
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Neutron Veto

• CND neutron reconstruction
• Clusters form neutral seed if unassociated with a CVT track
• Neutrals considered to be only photons or neutrons
• Velocity cut: 𝛽 < 0.8 for neutron, 𝛽 > 0.8 for photon

• Big problem: imperfect CVT efficiency means proton contamination
• Background sources

• Double hits
• Neutron and proton reconstructed in same place (cut on 𝜃!")
• Random co-incidence (off-time, etc.)
• Charged particles

• Past work
• Andrew Denniston: preliminary CND veto work
• Adam Hobart: Machine learning for DVCS
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Background: double hits

• Charged particles may leave two hits with two sets of PMT signals
• Two PMT signals arrive at same time -> reconstructed near 40°
• Easily eliminated using z cut
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Background: CND hit not associated w/ track

• CND hits not associated 
with CVT track
• Proton associated with one

CND cluster but not
another
• Can cut on angle between

neutron and proton
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Background: protons misidentified as neutrons

• Imperfect CVT tracking
efficiency
• Some protons mis-

reconstructed as neutrons
• This is the main background 

source we seek to eliminate
with ML

8



Neutron Veto: Development in Simulation

• Approach using Machine Learning: Boosted Decision Trees
• Identify features that are best at distinguishing between real neutrons and

“fake” neutrons (non-neutrons with neutron PID)

• Goal for features
• Local, detector-level information
• Avoid kinematic variables
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Neutron Veto: Development in Simulation

• Sample generation
• Uniform e’n and e’p generators with nucleon momentum up to 1 GeV/c
• Run through GEMC, generated momentum “truth” preserved
• Added CLAS12 background from RG-A

• Good neutron sample (signal): agreement with generated momentum 
in e’n+bknd
• Fake neutron sample (background): all neutron PID in e’p+bknd
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• Number of hits in 5 CND sectors
closest to neutron
• Energy deposition in 5 CND sectors

closest to neutron
• Number of hits in CND cluster
• Neutron energy
• CND layer multiplicity
• Number of hits in 6 CTOF 

components closest to neutron
• Energy deposition in 6 CTOF 

components closest to neutron
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Neutron Veto: simulation feature list



Neutron Veto: sim feature list
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Neutron veto: simulation results
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84%



Neutron Veto: data approach

• Available exclusive channels
• ℎ 𝑒, 𝑒!𝜋"𝑛
• 𝑑 𝑒, 𝑒!𝑝#$𝑛 (2 GeV, 6 GeV)
• 𝑑(𝑒, 𝑒!𝑝%$𝑛) (2 GeV, 6 GeV)
• 𝑑(𝑒, 𝑒!𝑝𝑝𝜋&)

• Select good and false neutrons
• Start with 𝑑 𝑒, 𝑒!𝑝#$𝑛 QE channel (higher stats)
• Calculate expected neutron momentum with momentum conservation
• Train ML to separate neutrons vs bad neutrons
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Neutron Veto: good neutrons (signal)

• cos θn,pred < 0.8

• | pmiss - pn | > 0.2 GeV/c
• Mmiss > 1.15 GeV/c
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Neutron Veto: non-neutrons (background)

• cos θn,pred > 0.9

• | pmiss - pn | < 0.1 GeV/c
• Mmiss < 1.05 GeV/c
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Neutron Veto: feature list
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Neutron Veto: Results
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85.5%



Next Steps

• Detection Efficiency
• Re-run with pass2 reconstruction
• CLAS analysis note

• Neutron Veto ML Algorithm
• Channel to focus on protons mis-reconstructed as neutrons (e.g. 
𝑑(𝑒, 𝑒!𝑝𝑝𝜋&))
• Continue search for good features (e.g. number of nearby hits in CVT)
• Cross-tests on different data sets
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