Studies of the Structure of Excited Nucleons at Jefferson Lab

Patrick Achenbach (Jefferson Lab)

On behalf of The CLAS Collaboration

Jan 2024

People have always been fascinated by that are hidden from their view and by what might be found inside objects

Excitation of Proton Resonances

- Charged *pion beams* revealed a clear **proton resonance** as early as 1954 (and established charge independence)
- *Electron scattering* on protons revealed **three resonance regions** in the 1970s

The Virtue of Electro- (and Photo-) Excitations

Clean process with electromagnetic vertex well known from QED

Study of many relevant observables:

- Excitation spectrum / quantum numbers
- Selective and exclusive reactions

Single-pion production

as an example:

- Q² evolutions in electroproduction
- **Polarization** in photoproduction:

	E_{γ} [MeV	V]													
		Beam			Target		Recoil		1			Γ	large	t + I	Recoil
[T]	hiel, Afzal, Wunderlich, Prog. Part. Nucl. Phys. 125, 103949 (2	2022)]	-	-	-	-	<i>x</i> ′	y'	z'	x'	x'	x'	y'	y'	y'
٠.		/- 	-	x	y	z	-	-	-	x	y	z	x	y	z
	Light baryon spectroscopy by meson-	unpolarize	ed σ_0		T			P		$T_{x'}$		$L_{x'}$		Σ	
	production reactions at electron accelerators	linearly po	ol. Σ		P	G	$O_{x'}$	T	$O_{z'}$	$L_{z'}$	$C_{z'}$	$T_{z'}$	E	σ_0	F
		circularly p	ol.	F		E	$C_{x'}$		$C_{z'}$		$O_{z'}$		G		H

 $T_{z'}$

 $L_{x'}$

 $C_{x'}$

 $O_{x'}$

L ~/

 $T_{r'}$

Separation of Cross Sections Into Structure Functions

Five-fold differential cross section separates in virtual photon flux and virtual photoproduction

N* Spectrum in Experiments vs. Quark Models

The nucleon's excitation spectrum reflects its complexity where our knowledge is incomplete

6

Connection to the Strong QCD Regime

Standard Model α_s diverges as Q approaches zero and QCD becomes non-perturbative

Confined systems and hadronic degrees-of-freedom play key role for understanding QCD

Non-Perturbative QCD Phenomena

[A. Deur et al., "Experimental Determination of the QCD Effective Charge $\alpha_{a1}(Q)$ ", Particles 5, 171 (2022)]

- For $Q \ll 1$ GeV, $\alpha_s(Q) \gtrsim 1$, which is one of the crucial pieces leading to **quark confinement**
- Calculation of non-perturbative QCD phenomena can be performed numerically in Lattice QCD
- Continuum QCD methods such as Dyson-Schwinger and Bethe-Salpeter equations (DSE/BSE) do not require a discretization of spacetime
- Data show that the QCD effective charge α_{g1}(Q) becomes Q-independent at very low Q
- Data compare well with two recent predictions based on DSE and on the AdS/CFT duality
- α_{g1}(Q) approaches QCD running coupling α_s(Q) and characterizes magnitude of the strong interaction

Experimental access to QCD observables through spin structure of neutron and proton

Concepts within Continuum Schwinger Method:

Dressed quark mass depends on its momentum

- Emergence of hadron mass (EHM) from QCD
- Resonances probe EHM where sum of dressed quark masses is dominant contribution to mass
- Consistency on momentum evolution of dressed quark mass function to validate of insight into EHM

[M. Ding, C.D. Roberts, S.M. Schmidt, Emergence of Hadron Mass and Structure, Particles 6, 57 (2023)]

Hadron masses are an emergent feature of QCD

Studies of the Structure of Excited Nucleons at Jefferson Lab

Program of N* Physics at Electron Accelerators

- Study of exclusive reaction channels over a broad kinematic range: πN, ωN, φN, ηN, η'N, ππN, KY, K*Y, KY*
- Common efforts at Jefferson Lab, ELSA, MAMI, and others:
 Separation of resonant and non-resonant contributions
- Extraction of electrocouplings from zero to high Q²:
 Quark mass momentum dependence shapes N* states and Q² evolution of electrocouplings
- Many facets of non-perturbative strong interaction are reflected in N* states and emergence from QCD

Goal must be to explore the *spectrum* and *structure* of N* states and their connection to QCD dynamics

CLAS12 for Jefferson Lab Experimental Hall B

Good physics needs good tools

Design Model of The CLAS12 Spectrometer

Beam Torus & 85% longitudinally pol. electrons Forward Max. luminosity: 10³⁵ s⁻¹cm⁻² Detecto Energies: up to ~ 10.6 GeV Solenoid & Central Detector beam

[V.D. Burkert et al., Nucl. Inst. and Meth. A 959, 163419 (2020)]

Ideal instrument to study exclusive meson electroproduction in the nucleon resonance region

Targets (org. by Run Groups)

- Proton (RG-A/K)
- Deuteron (RG-B)
- Nuclei (RG-M/D/E)
- Long. pol. NH₃/ND₃ (RG-C)

Magnetic Field

Subsystems of the CLAS12 Spectrometer

- C Beamline
- E Target
- N Central Vertex Tracker
- R Central Time of Flight
- A Central Neutron Det.
- Back-Angle Neutron Det.

High Threshold Cherenkov Forward Tagger Drift Chambers Low Threshold Cherenkov Ring Imaging Cherenkov Forward Time of Flight EM Calorimeter

F

 \mathbf{O}

R

W

Α

R

D

SVT

BMTZ

BMTC

Side View Photograph of CLAS12 Spectrometer

Event Reconstruction in CLAS12

Inclusive $ep \rightarrow e'X$ spectra as sum over all exclusive channels

Examples of mass spectra at four different beam energies

Elastic peak and first 3 N* states, Δ (1232), *N*(1520), and *N*(1680), visible

Examples of missing mass spectra in $ep \rightarrow e'\pi^+X$ at the same energies

Sharp peak of undetected neutron, peak of $\Delta^0(1232)$, and indications of higher excitations visible

CLAS & CLAS12 Nucleon Resonance Studies

Not all bumps are resonances, not every resonance generates a bump in all observables

Overview of Extractions of Electrocouplings

Reaction Channel	N*, Δ* States	Q ² ranges of γ _ν pN* Electrocouplings (GeV ²)
π⁰p, π⁺n	Δ(1232)3/2+	0.16 - 6.0
	N(1440)1/2+, N(1520)3/2-, N(1535)1/2-	0.30 – 4.16
π+n	N(1675)5/2, N(1680)5/2+, N(1710)1/2+	1.6 – 4.5
ηp	N(1535)1/2 ⁻	0.2 – 2.9
π⁺π⁻р	N(1440)1/2+, N(1520)3/2-	0.25 – 1.5
	Δ(1620)1/2 ⁻ , N(1650)1/2 ⁻ , N(1680)5/2+, Δ(1700)3/2 ⁻ , N(1720)3/2+, N'(1720)3/2+	0.5 – 1.5

Analysis codes employed for extractions:

Unitary Isobar Model (UIM)

- for πN and ηN
- Fixed-t dispersion relations (DR)
- Data-driven reaction model for π⁺π⁻N (JM09, JM16, JM19) [I.G. Aznauryan et al., Int. J. Mod. Phys. E 22, 1330015 (2013)] [V. Mokeev, Few-Body Syst. 57, 909 (2016)] [V. Mokeev and D. Carman, Few-Body Syst. 63, 59 (2022)]

Helicity amplitudes: $A_{1/2}$, $A_{3/2}$: transverse $S_{1/2}$: longitudinal $\gamma_{v} \xrightarrow{\lambda_{\gamma p}=1/2} N$ $\downarrow_{\lambda_{\gamma p}=3/2} \xrightarrow{N}$

è

Ν

В

Amplitude Extraction using Breit-Wigner Parametrization

Cross sections of resonance *r* of mass M_r and width $\Gamma_{tot}(M_r) = \Gamma_r$ and spin J_r :

$$\sigma_{L,T}^{r}(W,Q^{2}) = \frac{\pi}{q_{\gamma}^{2}} \sum_{N^{*},\Delta^{*}} (2J_{r}+1) \frac{M_{r}^{2}\Gamma_{tot}(W)\Gamma_{\gamma}^{L,T}(M_{r})}{(M_{r}^{2}-W^{2})^{2} + M_{r}^{2}\Gamma_{tot}^{2}(W)} \frac{q_{\gamma}}{K}$$

with following kinematic definitions:

$$q_{\gamma} = \sqrt{Q^2 + E_{\gamma}^2}, \quad E_{\gamma} = \frac{W^2 - Q^2 - M_N^2}{2W}, \quad K = \frac{W^2 - M_N^2}{2W}$$

Electromagnetic decay widths at the resonance point $W = M_r$ given by:

$$\begin{split} & \Gamma_{\gamma}^{L}(M_{r},Q^{2}) = 2 \frac{q_{\gamma,r}^{2}(Q^{2})}{\pi} \frac{2M_{N}}{(2J_{r}+1)M_{r}} |S_{1/2}(Q^{2})|^{2} \\ & \overline{\Gamma_{\gamma}^{T}(M_{r},Q^{2})} = \frac{q_{\gamma,r}^{2}(Q^{2})}{\pi} \frac{2M_{N}}{(2J_{r}+1)M_{r}} (|A_{1/2}(Q^{2})|^{2} + |A_{3/2}(Q^{2})|^{2}) \end{split}$$

CLAS N* Electrocouplings – First Resonance Region

CLAS N* Electrocouplings – Second Resonance Region

Electrocouplings reveal different interplay between meson-baryon cloud and quark core

Good agreement of the extracted N* electrocouplings from N π and N $\pi\pi$:

- Compelling evidence for reliability of results
- Different channels have very different mechanisms for non-resonant background

Need for data on the electrocouplings over broad range of Q^2

$\gamma^* p \to p \pi \pi$

Most high-lying N* states decay mainly to $N\pi\pi$ with much smaller strength to $N\pi$

[Mokeev, Aznauryan, IJMPC 26, 1460080 (2014); Mokeev et al., PRC 93, 025206 (2016); Carman, Joo, Mokeev, FBS 61, 29 (2020)]

 $N\pi\pi$ channel gave first electrocoupling results on higher-lying states up to 1.8 GeV

Description of $p\pi^+\pi^-$ Data by a Reaction Model

5-fold differential cross section $\frac{d^5\sigma}{d^5\tau}$, where the denominator consists of differentials for the five variables that define the final state kinematics

Model provides reasonable description of data for extraction of resonance electrocouplings

Nucleon Resonance Electroexcitation Amplitudes

[D.S. Carman, R.W. Gothe, V.I. Mokeev, and C.D. Roberts, Particles 6, 416 (2023)]

Satisfactory description for ∆(1232)3/2+, N(1440)1/2+, ∆(1600)3/2+

Continuum QCD predictions: [Y. Lu et al., Phys. Rev. D 100, 034001 (2019)]

- Important evidence for the different internal structures of nucleon resonances
- Insight into strong interaction dynamics underlying Emergence of Hadron Mass
- Data compared to Continuum Schwinger Method with momentum-dependent quark masses

Concluding Remarks on the CLAS N* Program

Study of N* states is one of the key foundations of the CLAS physics program

- CLAS has provided a huge amount of data up to $Q^2 \sim 5 \text{ GeV}^2$
- Electrocouplings of most N* states < 1.8 GeV have been extracted for the first time

Probed N* structure is very complex and relates to fundamental QCD phenomena

CLAS12 will extend these studies to $0.05 < Q^2 < 12 \text{ GeV}^2$ and W < 2.4 GeV

- Exclusive electroproduction of Nπ, Nη, Nππ, KY reactions from unpolarized proton target with longitudinally polarized electron beam
- Data will provide access to higher-lying N* states
- Goal is the understanding of active degrees of freedom that account for N* structure vs. distance scale

RG-A	Spr. 18 126 mC					
	Fall 18 99 mC	10.2 GeV, 10.6 GeV				
	Spr. 19 58 mC	50% of total				
RG-K	Fall 18 28 mC	6.3 GeV, 7.4 GeV 10% of total				
Running since last week						

Opportunities with CEBAF at 22 GeV

Electrocouplings for π N, KY, and $\pi^+\pi^-p$ reaction with 22 GeV beam can be determined up to $Q^2 \sim 30 \text{ GeV}^2$ for $\mathcal{L} \sim 2 - 5 \times 10^{35} \text{ cm}^{-2}\text{s}^{-1}$

A. Accardi et al., e-print:2306.09360 [nucl-ex]

The high luminosity frontier provides JLab a special advantage in comparison with EIC or EICC.

It offers a unique opportunity to study Nature's simplest 3-body bound state and its electrocouplings with its resonances in a large domain of momentum transfer.

CLAS22 will map out the working of QCD from its non-perturbative behavior at low Q^2 to its asymptotic regime where perturbative QCD can provide predictions, charting out the pattern of dynamical chiral symmetry breaking.