3D nucleon structure with CLAS12 at Jefferson Lab

National Cheng Kung University
 Department of Physics, Rm 36169(1F)
 No.1, University Road, Tainan City, Taiwan

Kyungseon Joo

University of Connecticut

January 29, 2024

UCONN | UNIVERSITY OF

Thomas Jefferson National Accelerator Facility (Jefferson Lab)

- Newport News, Virginia (US east coast)
- 1995 2012 6 GeV electron beam
- 2018 today 11 / 12 GeV electron beam / photon beam

CLAS / CLAS12 in Hall B at Jefferson Lab

1995 – 2012, 6 GeV electron beam

2018 – today, 11 GeV electron beam

•
$$\mathcal{L} = 1 \times 10^{35} \text{ cm}^{-2} \text{s}^{-1}$$

Inclusive electron trigger (all reactions will be analyzed in parallel)

 \rightarrow I_{max} = 90 µA, PoI_{max} ~ 90%

3-Dimensional Imaging of Quarks and Gluons

Generalized Parton Distributions (GPDs)

Key Information from GPDs

- Multi-dimensional picture of the proton in (1+2)D
- Access to form factors of energy momentum tensor
 - Mechanical properties of the nucleon
 - Quark and gluon contribution to mass of the nucleon
- Sum rule for angular momentum

Study GPDs: Deeply Exclusive Processes

- + Access to transversity degrees of freedom described by chiral-odd GPDs
- Distribution Amplitude (DA) is involved as additional soft non pert. quantity

Deeply Virtual Meson Production

	Meson	Flavor
н т, Е т	π^+	$\Delta u - \Delta d$
	π^{0}	$2\Delta u + \Delta d$
	η	$2\Delta u - \Delta d + 2\Delta s$
H,E	$ ho^+$	u-d
	ρ^{0}	2u + d
	ω	2u - d
	ϕ	g

 $H_{\ensuremath{\mathsf{T}}}$ is related to the protons tensor charge

$$\delta_T^{u,d} = \int dx H_T^{u,d}(x,\xi=0,t=0)$$

➔ Absolute magnitude of transversly polarized valence quarks inside a transv. polarized nucleon

 \overline{E}_{T} is related to the protons anomalous tensor magnetic moment

$$k_T^{u,d} = \int dx \bar{E}_T^{u,d}(x,\xi=0,t=0)$$

Differential Cross Section of DVMP (π^0)

Pseudoscalar meson electroproduction with CLAS12

Exclusive ρ/ω production with CLAS12, ep-> ep (ρ/ω)

 $\sigma_{LT'} \sim r_{00}^8 \sim \operatorname{Im}\left[\langle H_T \rangle^* \langle E \rangle + \langle \bar{E}_T \rangle^* \langle H \rangle\right]$

Invariant Mass: $\pi^+ + \pi^-$

Invariant Mass: $\pi^+ + \pi^- + \pi^0$

ep ightarrow ep ho

N. Trotta et al (UCONN)

From the ground state nucleon to resonances

How does the exitation affect the 3D structure of the Nucleon?

 \rightarrow Pressure distributions, tensor charge, ... of resonances?

Traditional way: Study of transition form factors (**2D picture** of transv. position)

3D picture of the exitation process: Encoded in transition GPDs

Simplest case: $N \rightarrow \Delta$ transition → 16 transition GPDs

P. Kroll and K. Passek-Kumericki, Phys. Rev. D 107, 054009 (2023). K. Semenov, M. Vanderhaeghen, arXiv:2303.00119 (2023).

- 8 helicity non-flip transition GPDs (twist 2)
 - Related to the Jones-Scardon and Adler EM FF for the N $\rightarrow \Lambda$ transition
- 8 helicity flip transition GPDs (transversity)

factorization expected for: $-t/Q^2$ small, $Q^2 > M^2_{N^*}$ x_B fixed

N-> Δ (1232) transition GPDs: 8 twist-2 GPDs: 4 unpolarized, 4 polarized. K. Semenov, M. Vanderhaeghen, arXiv:2303.00119 (2023)

Non Diagonal DVCS ep->en $\pi^+\gamma$

EIC Asia Workshop 2024

Electron Scattering Binning Scheme

Exclusive Process (γ , π , ρ , ϕ , ..) Q², W, cos θ , Φ Q², x_B, -t, Φ

Off-diagonal DVCS or DVMP Q^2 , x_B , -t, Φ , $M_{\pi N}$, $\cos\theta^*$, ϕ^*

Key Information from TMDs

Complete momentum spectrum of single particle

- Transverse momentum size as function of x (3D map) at different Q²
- Spin-Spin and Spin-Orbit Correlations of partons
- Information on parton orbital angular momentum (no direct model-independent relation)

8 Leading TMDs

TMDs in **black** survive integration over transverse momentum and reduce to the PDFs TMDs in **blue** and **red** vanish if there is no quark orbital angular momentum TMDs in **red** are time-reversal odd

SIDIS with a Longitudinally Polarized Beam and an Unpolarized Target

SIDIS with a Longitudinally Polarized Beam and an Unpolarized Target

SIDIS with a Longitudinally Polarized Beam and an Unpolarized Target

EIC Asia Workshop 2024

SIDIS Cross-Section and Boer-Mulders

The lepton-hadron Unpolarized SIDIS Cross-Section:

The Boer-Mulders and Cahn effects are present in the Structure Functions:

Example of Unfolding Procedure (5-fold)

R. Capobianco (UConn)

From CLAS to JLAB to COMPASS to EIC

→ DVMP/SIDIS at JLab 12 GeV / COMPASS and EIC

Electron Ion Collider at BNL

For e-N collisions at the EIC:

- ✓ Polarized beams: e, p, d/³He
- ✓ e beam 5-10(20) GeV
- ✓ Luminosity L_{ep} ~ 10³³⁻³⁴ cm²sec⁻¹ 100-1000 times HERA
 - ✓ 20-100 (140) GeV Variable CoM

For e-A collisions at the EIC:

- ✓ Wide range in nuclei
- ✓ Luminosity per nucleon same as e-p
- ✓ Variable center of mass energy

World's first

Polarized electron-proton/light ion and electron-Nucleus collider

Conclusion and Outlook

- GPDs and TMDs provide a unifying framework to study the 3-D quark and gluon structure of the nucleon
- 3-D imaging of nucleons uncovers the rich dynamics of QCD.
- CLAS12 allows high precision measurements of TMDs and GPDs with large kinematic coverages in the valence quark regime!
- The COMPASS, J-PARC, PANDA, EIC and other experiments will allow us a full picture of the 3D structure of the nucleon.

Joo's Group

Research Scientists

A. Kim

(Jointly with U. Giessen)

Postdocs

U. Shrestha

Current PhD Students

V. Klimenko

R. Capobianco N. Trotta. J. Richards A. Bulgakov

R. Santos.

G. Kainth

The work is supported by DOE's Office of Nuclear Physics under the grant DE-FG02-04ER41309