Initial State Helicity Correlation in Wide Angle Compton Scattering

E05-101

Donal Day and Bogdan Wojtsekhowski, co-spokespersons

Hall C Workshop
January 7, 2006
Physics goals of this experiment complement those of E99-114 and benefits from its experience with the RCS experimental technique.
Real Compton Scattering: Introduction

- Key element in Program of Hard Exclusive Reactions
 - RCS
 - Elastic Form Factors
 - DVCS
 - DVMP

- Common issues:
 - interplay between hard and soft processes
 - Onset of asymptotic regime
 - Role of hadron helicity flip

- Uniqueness
 - Vary both s and t
 - Weighting of quarks, e_q^2
 - independent integral of GPD’s, χ^{-1}
Compton Scattering off nucleons provides information on the substructure of nucleon in terms of quark and gluon d.o.f. → extremely complicated

Compton scattering in various kinematical regions

- low energy
 → dominated by nucleon as a whole

- deeply virtual CS; low $|t|$, large Q^2
 → handbag diagram involving skewed parton distributions

- 'wide angle' CS; low Q^2, large $|t|$ and s ensures dominance of short distance behaviour

What is the reaction mechanism?
What is the reaction mechanism?

- 3 active quarks
- 2 hard gluons
- 3-body "form factor"

- 1 active quark
- 0 hard gluons
- 1-body "form factor"

Which, if either, dominates at few GeV?

We will be able to distinguish among the competing mechanisms.
Asymptotic (pQCD) Mechanism

- momentum shared by hard gluon exchange
- 3 active quarks
- valence configuration dominates
- soft physics in distribution amplitudes, $\Phi(x_1, x_2, x_3), \Phi(y_1, y_2, y_3)$
- constituent scaling: $\frac{d\sigma}{dt} = f(\theta_{CM})/s^6$
- Must dominate at "sufficiently" high energy(?)
- Has predictions for polarization observables, $K_{LL} = A_{LL}$

Brodsky/Lepage
Kronfeld, Nizic
Vanderhaeghen, Guichon
Brooks, Dixon, ...
Constituent Scaling

\[\gamma p \rightarrow \gamma p \]

Approximate scaling

\[\frac{d\sigma}{dt} = f(\theta_{CM})/s^6 \]

Cornell data approximately support scaling but ...

Asymptotically we expect pQCD to be dominant, but when?
Handbag Mechanism for \((s, -t, -u) \gg M^2\)

- One active parton
- Momentum shared by soft overlap
- Feynman mechanism
 - struck quark nearly real \((x \sim 1)\) (co-linear with proton)
- Form factor like expression
 \[
 \frac{d\sigma}{dt} = \frac{d\sigma}{dt} \bigg|_{KN} f(t)
 \]
- Straightforward predictions for polarization observables
Factorize into hard scattering on single quark and moments of GPD’s at skewness $\xi = 0$

- Hard scattering: Klein-Nishina from nearly on-shell parton
- Soft physics: Compton form factors $R_V(t)$, $R_A(t)$ and $R_T(t)$ relating emission and reabsorption of struck quark in the proton

Compton form factors:

$$
R_V(t) = \sum_a e_a^2 \int_{-1}^{1} \frac{dx}{x} H^a(x, 0, t)
$$

$$
R_A(t) = \sum_a e_a^2 \int_{-1}^{1} \frac{dx}{x} \text{sign}(x) \hat{H}^a(x, 0, t)
$$

$$
R_T(t) = \sum_a e_a^2 \int_{-1}^{1} \frac{dx}{x} E^a(x, 0, t)
$$

Elastic form factors:

$$
F_1(t) = \sum_a e_a \int_{-1}^{1} dx H^a(x, 0, t)
$$

$$
G_A(t) = \sum_a \int_{-1}^{1} dx \text{sign}(x) \hat{H}^a(x, 0, t)
$$

$$
F_2(t) = \sum_a e_a \int_{-1}^{1} dx E^a(x, 0, t)
$$
Cross section from E99-114

\[\frac{d\sigma}{dt} = \frac{d\sigma_{KN}}{dt} \left[f_V R_V^2(t) + (1 - f_V) R_A^2(t) \right] \]

Polarization Observables

\[A_{LL} \frac{d\sigma}{dt} = \frac{1}{2} \left[\frac{d\sigma(++)}{dt} - \frac{d\sigma(+-)}{dt} \right] \]

\[A_{LL} = K_{LL} \approx K_{KN} \frac{R_A(t)}{R_V(t)} \]

Related to \(\frac{\Delta u}{u} \) at moderate to high \(x \).
Handbag in CQM

Miller in IA approximation of handbag.

- Massive quark
- Model wave function same as for E/M form factors
- Orbital angular momentum and nonconservation of proton helicity
- Good agreement with cross section data
- But $A_{LL} \neq K_{LL}$, backward angles
 $A_{LL} \approx -K_{LL}$

\[0\]
Physics Goals

- Measure A_{LL} (never been measured) at two scattering angles:
 \[\theta_{CMS}^{\gamma} = 70^\circ \text{ corresponding to } -t = 2.4 \text{ (GeV/c)}^2 \]
 \[\theta_{CMS}^{\gamma} = 140^\circ \text{ corresponding to } -t = 6.4 \text{ (GeV/c)}^2 \]

- Provide an experimental test of the RCS reaction mechanism: does the photon interact with a constituent or a current quark?

- Provide an additional test for hadron helicity conservation and pQCD
Experimental Layout

Kinematic Range

\[E_\gamma = 4.3 \text{ GeV}, \quad s = 9 \text{ GeV}^2 \]
\[\theta_{\text{cms}} = 70^\circ, 140^\circ \]

- mixed \(e - \gamma \) beam
 \[\rightarrow e - p/\text{RCS} \]
 discrimination needed
 \[\rightarrow \text{control of backgrounds} \]
- good angular resolution
- Polarized target

Require HMS trigger only

Initial State Helicity Correlation in Wide Angle Compton Scattering – p.13/31
Calorimeter

- 1750 lead glass blocks, TF-1 type
- Arranged as 56 rows in 32 columns
- Approximately 1.2 meters by 2.1 meters
- Built by GEP-III, to be used by SANE and SemiSANE (BETA) and E03-003
Deflection of electrons by magnetic field.
Polarized Target

- Microwave Input
- NMR Input
- Refrigerator
- Refrigerator
- Liquid Helium
- Liquid Helium
- LN$_2$
- LN$_2$
- To Pumps
- To Pumps
- Magnet
- Target (inside coil) 1°K
- NMR Coil
- B 5T

- frozen(doped) NH$_3$
- 4He evaporation refrigerator
- 5T polarizing field
- remotely movable insert
- dynamic nuclear polarization

Initial State Helicity Correlation in Wide Angle Compton Scattering – p.16/31
Kinematics

<table>
<thead>
<tr>
<th>P#</th>
<th>t (GeV/c)2</th>
<th>θ_{γ}^{lab} degree</th>
<th>θ_{γ}^{cm} degree</th>
<th>θ_{p}^{lab} degree</th>
<th>E_{γ}^{lab} GeV</th>
<th>p_p GeV/c</th>
<th>L m</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>-2.4</td>
<td>25</td>
<td>70</td>
<td>39</td>
<td>3.00</td>
<td>2.02</td>
<td>7.0</td>
</tr>
<tr>
<td>P2</td>
<td>-6.4</td>
<td>82</td>
<td>140</td>
<td>12</td>
<td>0.87</td>
<td>4.25</td>
<td>2.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P#</th>
<th>θ_{γ}^{lab} degree</th>
<th>t (GeV/c)2</th>
<th>θ_{γ}^{cm} degree</th>
<th>$\frac{d\Omega_{\gamma}}{d\Omega_p}$</th>
<th>D</th>
<th>N_{RCS} total</th>
<th>ΔA_{LL}</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>25</td>
<td>-2.4</td>
<td>70</td>
<td>0.58</td>
<td>1.6</td>
<td>1850</td>
<td>0.05</td>
</tr>
<tr>
<td>P2</td>
<td>82</td>
<td>-6.4</td>
<td>140</td>
<td>24.5</td>
<td>5.5</td>
<td>3250</td>
<td>0.07</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P#</th>
<th>θ_{e}^{V} degree</th>
<th>θ_{p}^{V} degree</th>
<th>HMS degree</th>
<th>p(proton) GeV/c</th>
<th>θ_{rms} mrad</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.7</td>
<td>4.1</td>
<td>39</td>
<td>2.02</td>
<td>1.75</td>
</tr>
<tr>
<td>2</td>
<td>15.4</td>
<td>0.6</td>
<td>12</td>
<td>4.25</td>
<td>0.83</td>
</tr>
<tr>
<td>Kin.</td>
<td>Procedure</td>
<td>beam, nA</td>
<td>time hours</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>---------------------------</td>
<td>----------</td>
<td>------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P1</td>
<td>BigCal calibration</td>
<td>1000</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P1</td>
<td>RCS data taking</td>
<td>90</td>
<td>176</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P2</td>
<td>RCS data taking</td>
<td>90</td>
<td>240</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Packing Fraction Measurements</td>
<td>90</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Moller Measurements</td>
<td>200</td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Beam Time</td>
<td></td>
<td>458</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BigCal angle change</td>
<td></td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Target Anneals</td>
<td></td>
<td>52</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stick Changes</td>
<td></td>
<td>36</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Overhead Time</td>
<td></td>
<td>96</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Requested Time</td>
<td></td>
<td>506</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Asymmetry measurement relaxes demands on some systematic error sources (solid angles etc) which cancel but requires attention to others. The largest sources are:

<table>
<thead>
<tr>
<th>Error Source</th>
<th>Error (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target polarization</td>
<td>2%</td>
</tr>
<tr>
<td>Beam polarization</td>
<td>2%</td>
</tr>
<tr>
<td>π^0 subtraction (shape)</td>
<td>3%</td>
</tr>
<tr>
<td>$e\rho\gamma$ subtraction</td>
<td>1%</td>
</tr>
<tr>
<td>Total</td>
<td>4.2%</td>
</tr>
</tbody>
</table>
Conclusions

- Experiment straightforward - based on experimental data and extensive experience.
- Test onset of handbag approach in terms of GPD’s.
- Positive indications for handbag allows extraction of non-perturbative structure of hadrons in form of GPD’s.
- Explore role of finite quark masses in polarization observables.
- Shed light on nature of quark helicity flip processes.
- As byproduct \tilde{A}^{π}_{LL} will also be measured.
- Scheduling with SANE and Semi-SANE captures setup savings.
Merely due to lack of available beam time, the PAC recommends that only the kinematic point in the backward hemisphere be measured.
Approved with A− rating for 14 days.
Simulation

- Presence of radiator creates unique conditions
 - Beam blows up
 - Large number of secondary particles (electrons, photons) - implications for rates in calorimeter; where to place shielding.
 - Include target magnetic field

- Physics backgrounds
 - Elastic electron scattering
 - Quasielastic electron scattering
 - $\pi^0 \rightarrow 2\gamma$ from proton and target materials
 - Include target magnetic field
Status

- GEANT4 - Justin Wright, UVA graduate student
- Electromagnetic part moving along well
- Second part hindered by lack of the physics in GEANT4
- Also by our unfamiliarity with the standard practice for incorporating new physics.
GEANT4 Simulation

- **Geometry**
 - Upstream beam pipe
 - Downstream beam pipe (Helium bag or flaring Aluminum tube)
 - Upstream copper radiator (10%)
 - Target can (simplified), including the target cell and magnet
 - Big Cal
 - Simple plane detectors to represent the solid angle openings of the Calorimeter and the HMS

- **Fields**
 - The target magnet's field (read in from a table)

- **Electromagnetic processes as currently implemented by the Geant4 collaboration**
 - Electron Ionization
 - Electron Bremsstrahlung
 - Photo Electric Effect
 - Compton Scattering (from electron)
 - Pair Production
 - Annihilation

- **Data collection and analysis**
 - Each primary electron represents a single event
 - All daughter particles are tracked fully
 - All physical objects can be treated as perfect detectors, recording all interactions
 - Separate code converts this data into root trees or paw ntuples
1 µA on radiator instead of 100 nA

Radiator

Magnet(s)

Polarized target

Beam dump on floor

Existing beam dump
Details

<table>
<thead>
<tr>
<th>Details</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>HMS resolution</td>
<td>$< 0.1%$</td>
</tr>
<tr>
<td>HMS acceptance</td>
<td>$\pm 27(h) \pm 70(v)$ mr</td>
</tr>
<tr>
<td>HMS $\frac{\Delta p}{p}$</td>
<td>$\pm 9%$</td>
</tr>
<tr>
<td>Angle Resolution</td>
<td>0.9 mr (h) 0.9 mr(v)</td>
</tr>
<tr>
<td>HMS vertex resolution</td>
<td>± 1 mm</td>
</tr>
<tr>
<td>Photon fluence</td>
<td>$\frac{d\kappa}{k}(0.10 + 0.018 + 0.01)$</td>
</tr>
<tr>
<td>BigCal block sizes</td>
<td>4×4 cm</td>
</tr>
<tr>
<td>BigCal σ_E</td>
<td>$5%/\sqrt{E}$</td>
</tr>
<tr>
<td>BigCal</td>
<td>1.2×2.1 m</td>
</tr>
<tr>
<td>Möller</td>
<td>$< 1.5%$</td>
</tr>
<tr>
<td>Target thickness</td>
<td>1.5 g/cm2 of NH3, 0.3 of He</td>
</tr>
<tr>
<td>Multiple scattering</td>
<td>1.7 (P1), 0.8 (P2) mr</td>
</tr>
</tbody>
</table>

Lucite Cerenkov hodoscope				
	thick	horiz.	vert.	#
x	1.25	80	12.5	16
y	2.5	12.5	160	8

10 p.e. 11% r.l., $x_{\text{rms}} = 3.6$ cm

<table>
<thead>
<tr>
<th>kin.</th>
<th>t (GeV/c)2</th>
<th>μ (GeV/c)2</th>
<th>$\theta_{\text{lab}}^{\gamma}$ degree</th>
<th>$\theta_{\text{cm}}^{\gamma}$ degree</th>
<th>$\theta_{\text{p}}^{\gamma}$ degree</th>
<th>E_{γ}^{lab} GeV</th>
<th>p_p GeV/c</th>
<th>L m</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>-2.4</td>
<td>-4.8</td>
<td>25</td>
<td>70</td>
<td>39</td>
<td>3.00</td>
<td>2.02</td>
<td>7.0</td>
</tr>
<tr>
<td>P2</td>
<td>-6.4</td>
<td>-0.75</td>
<td>82</td>
<td>140</td>
<td>12</td>
<td>0.87</td>
<td>4.25</td>
<td>2.5</td>
</tr>
</tbody>
</table>
Magnet coils restrict access to range of angles: here the field direction is along the beam line.
\(\pi^0 \) photons
Dilution from other materials - Hall A Al data

\[
\frac{N_{\text{quasi}}}{N_{\text{free}}} \times \left(\frac{P_N + P_{\text{He}}}{P_{\text{free}}} \right) = 0.02 \times \frac{(7 + 2.4)}{3} \approx 0.06
\]
Dilution from other materials - Simulation results

\[F = \frac{N_p^\pi}{N_{\pi_{\text{free}}}^\pi} \times T_p \times T_\pi \times CL \times (P_N + P_{\text{He}})/P_{\text{free}} = \frac{1}{3.5} \times 0.55 \times 0.4 \times \frac{1}{2} \times (7 + 2.4)/3 \sim 0.10 \]
Counting rate vs. threshold 11/28/2001

- **Beam energy**: 3.3 GeV
- **Beam current**: 10 µA
- **Target**: 15 cm LH₂
- **Calorimeter angle**: 35°
- **Calorimeter to target**: 10.6 m
- **Solid angle**: 0.36 msr

Graph showing the relationship between counting rate (Hz) and threshold (mV) with data points plotted against energy (GeV).
Miller approach compared to Huang et al.

Miller
- constituent quark model
- soft physics embodied in wave function (power law)
- $m_q \simeq 350$ MeV
- non-zero quark-helicity flip
- $\Rightarrow K_{LL} \neq A_{LL}$

Huang et al.
- current quarks
- proton helicity flip non-zero
- $\Phi_2 = -\Phi_6$; double-flip amplitudes
- Φ_2, Φ_6 are non-zero with α_s corrections, without both are zero.
- $\Rightarrow K_{LL} = A_{LL}$

Miller’s quark helicity flip implies $\Phi_2 \neq -\Phi_6$ even with α_s corrections, and large compared to non-helicity flip.