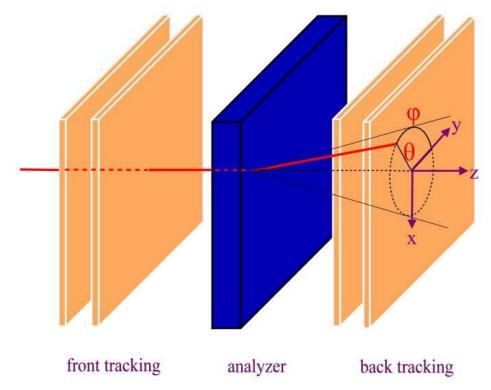
Status of Focal Plane Polarimeter

E04-108 (GEp-III) & E04-019

Frank R. Wesselmann

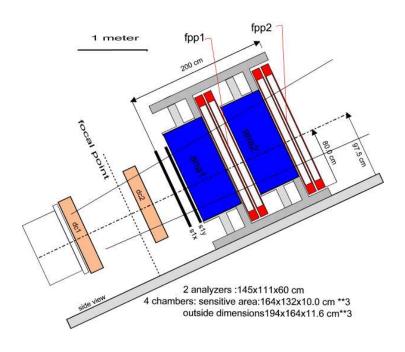
Norfolk State University

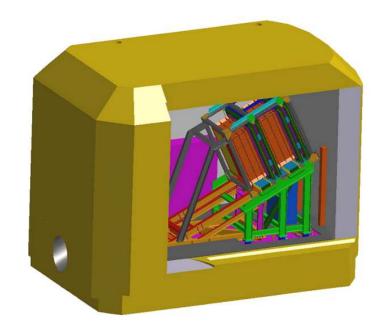
Status of Focal Plane Polarimeter


Outline:

- Overview & Introduction
- Hardware
 - Assembly & Testing
 - Calibration & Studies
- Software
 - Custom Tracking
 - Integration into HMS Replay
- Plans
 - Installation
- Summary

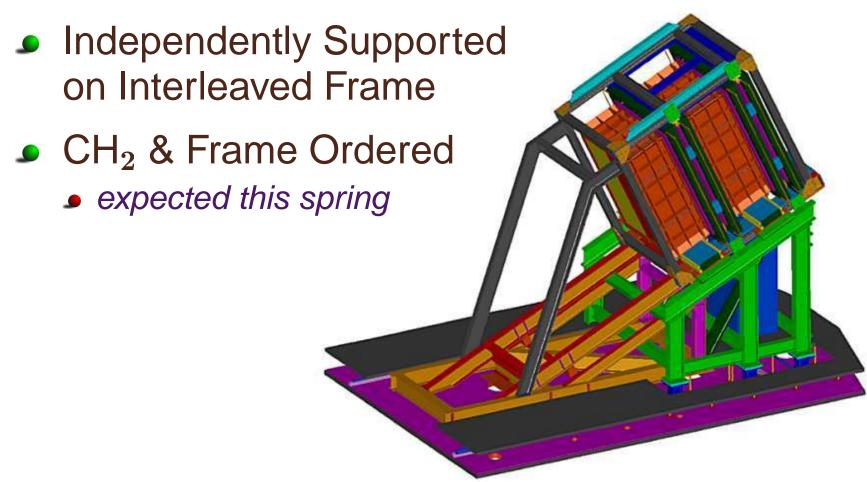
Overview


Focal Plane Polarimeter:


- Installed in HMS, Instead of Cerenkov
- Measures Proton Polarization

Coincidence with Electrons in BigCal

HMS FPP – Overview



- Active Area: 166 cm (V) × 132 cm (H)
- Two Successive Polarimeters: CH₂ Analyzer & two 3-Layer Drift Chambers Each
 - maximizes analyzing & detection efficiency
- Requires 3x Distinct Tracking
 - 1x per polarimeter + standard HMS tracking

Analyzers:

55 cm Thick, Layered, Split L/R

opens like collimator for straight-through tracking

Drift Chambers

Measure Coords u, x, v

- Drift Cells: 2 cm (in-plane) × 1.6 cm (out-of-plane)
- Target Resolution: $< 200 \, \mu \mathrm{m} \; (\sim 1 \, \mathrm{mr})$
- Chamber Gas: 50/50 Mix of Argon/Ethane
- 4+1 Chambers Built by Dubna
- Chambers On Site, Tested
 - 4 of 1164 wires bad, one chamber inverted stacking order
- Support Frame On Site,
 Special Installation Pieces Ordered

Drift Chambers (continued)

Chambers Assembled & Installed in Frame

- Resolution & HV Studies in Final Phase
 - → software section

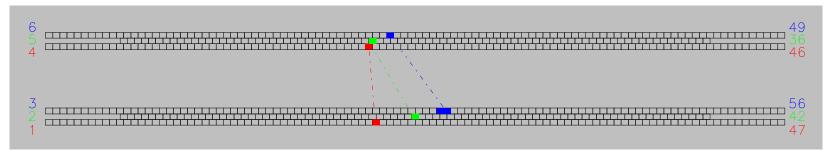
Custom Trigger Hardware

- Cannot Use HMS S2 Scintillators for Trigger
 - after polarimeter
- Need Custom S0 Scintillators
 - S1 single rate too high
- Installed Next to HMS DC1
 - maximum available distance from \$1
- Scintillator Assembly Constructed by Eliezer Piasetzky (Tel Aviv U.)
 - 60 cm (H) × 30 cm (V)
 - 2 paddles, tube on both ends
- Expected On-Site This Month

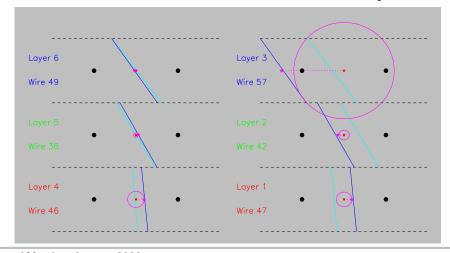
HMS FPP – Software

Need Tracking for FPP DCs Integrated Into:

- HMS Part of Hall C Replay Engine
- Simple Replay for Hardware Testing


Tracking Requirements for FPP DCs:

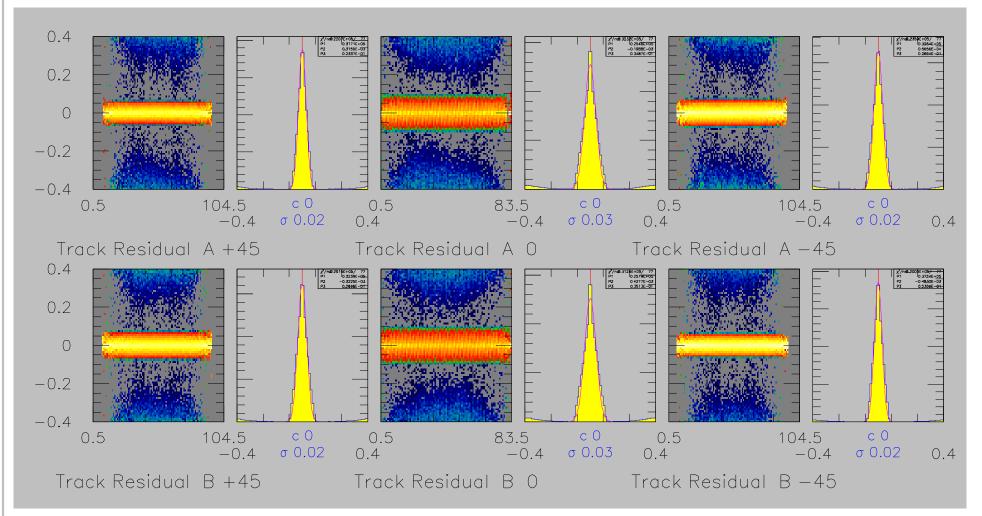
- 2x Independent Tracking
 - polarization info from comparison to HMS track
- FPP DCs Few Layers, Closely Spaced
 - No inherent restriction on possible hit wire combos
- Potential to Re-Use HMS Tracking Code?


HMS FPP – Software

Custom Tracking for FPP DCs Using 2-Step Algorithm:

- Use Wire Positions Only to Select Hits
 - test all possible hit combinations, pick best $\chi^2/\mathrm{d.f.}$

- Consider Drift of Selected Hits for Final Track
 - corrections to drift time based on simple track



Software Status

Status of FPP Analysis Software:

- Custom Tracking Code Written & Tested
- Early Version Integrated into Hall C Replay Engine
- Implemented Trigger & Drift Time Corrections, Drift Map
 - signal propagation delays, geometry corrections
- Current Results:
 - resolution $200 300 \,\mu\mathrm{m}$
 - efficiency > 99% (~ 30 Hz soft cosmics)

HMS FPP – Tracking Resolution

Residuals: $x_{\text{track}} - x_{\text{hit}}^{\text{drift}}$

Software Status

Remaining Tasks for FPP Analysis Software:

- Improve Timing Parameters
 - maximum resolution
- Better Abstraction of Drift Map
 - currently: look-up table per wire
- Investigate Suitability of HMS Tracking
 - established, less code to maintain
- Update HMS-ported Custom Tracking in Engine
 - switch to latest engine version

Plans

Winter/Spring 2006:

- Support from Chamber Builders in Dubna:
 - Repair Chamber with 3 Bad Wires
 - Re-Stack Inverted Chamber
- Finalize Drift Map and Corrections
- Find Best HV Values
- Switch DAQ from FastBus to VME

Spring/Summer 2006:

- Install Complete FPP into HMS
- Continue Testing after Installation
 - requires HV, DAQ new gas handling system?

Summary

Focal Plane Polarimeter

- New HMS Detector
 - reusable
- Good Resolution, Efficiency
 - as designed
- Ready this Year
 - Where's the Beam?