

The Qpweak Experiment: A Search for New TeV Scale Physics via a Measurement of the Proton's Weak Charge

Measure: Parity-violating asymmetry in

 \vec{e} + p elastic scattering at $Q^2 \sim 0.03 \text{ GeV}^2$

to ~4% relative accuracy at JLab

Extract: Proton's weak charge $Q_{weak}^p \sim 1 - 4 \sin^2\theta_W$ to get $\sim 0.3\%$ on $\sin^2\theta_W$ at $Q^2 \sim 0.03$ GeV²

tests "running of $\sin^2\theta_W$ " from M^2_Z to low Q^2 sensitive to new TeV scale physics

W.T.H. van Oers (Hall C Users Meeting 2006)

Running coupling constants in QED and QCD

What about the running of $sin^2\theta_W$?

"Running of $\sin^2\theta_W$ " in the Electroweak Standard Model

• Electroweak radiative corrections $\rightarrow \text{sin}^2\theta_W$ varies with Q

• All "extracted" values of $\sin^2\theta_W$ must agree with the Standard Model prediction or new physics is indicated.

Low Energy Weak Neutral Current Standard Model Tests

Low energy weak charge "triad" (M. Ramsey-Musolf) probed in weak neutral current experiments

SLAC E158: parity-violating Moller scattering
$$\vec{e} + e \rightarrow e + e \ Q_W^e \approx -(1 - 4\sin^2\theta_W)$$

Leptonic

Cesium Atomic Parity Violation: primarily sensitive to neutron weak charge

$$Q_W^A \approx -N + Z(1 - 4\sin^2\theta_W) \approx -N$$

Semi-Leptonic

JLAB Q^p_{weak} : parity-violating \vec{e} -p elastic scattering \vec{e} + p \rightarrow e + p $Q^p_W \approx 1 - 4 \sin^2 \theta_W$

These three types of experiments are a complementary set for exploring new physics possibilities well below the Z pole.

Qpweak: Extract from Parity-Violating Electron Scattering

measures Q^p - proton's electric charge

measures Q^p_{weak} - proton's weak charge

$$A = \frac{2M_{NC}}{M_{EM}} = \left[\frac{-G_F}{4\pi\alpha\sqrt{2}}\right] \left[Q^2 Q_{weak}^p + F^p (Q^2, \theta)\right]$$

$$\xrightarrow{Q^2 \to 0 \atop \theta \to 0} \left[\frac{-G_F}{4\pi\alpha\sqrt{2}}\right] \left[Q^2 Q_{weak}^p + Q^4 B(Q^2)\right]$$

$$\text{contains } G_{E,M}^{\gamma} \text{ and } G_{E,M}^{Z}$$

$$Q_{weak}^p = 1 - 4\sin^2\theta_W \sim 0.072$$
 (at tree level)

- Q^{p}_{weak} is a well-defined experimental observable Q^{p}_{weak} has a definite prediction in the electroweak Standard Model

Energy Scale of an "Indirect" Search for New Physics

· Parameterize New Physics contributions in electron-quark Lagrangian

$$L_{\text{e-q}}^{\text{PV}} = L_{\text{SM}}^{\text{PV}} + L_{\text{NEW}}^{\text{PV}} = -\frac{G_F}{\sqrt{2}} \overline{e} \gamma_{\mu} \gamma_5 e \sum_q C_{1q} \overline{q} \gamma^{\mu} q + \frac{g^2}{4\Lambda^2} \overline{e} \gamma_{\mu} \gamma_5 e \sum_q h_V^q \overline{q} \gamma^{\mu} q$$

 A 4% Qp_{Weak} measurement probes with 95% confidence level for new physics at energy scales to:

$$\frac{\Lambda}{g} \sim \frac{1}{2\sqrt{\sqrt{2}G_F \left|\Delta Q_W^p\right|}} \approx 2.3 \text{ TeV}$$

- The TeV discovery potential of weak charge measurements will be unmatched until LHC turns on.
- If LHC uncovers new physics, then precision low Q² measurements will be needed to determine charges, coupling constants, etc.

g: coupling constant, Λ: mass scale

Qpweak & Qeweak - Complementary Diagnostics for New Physics

- Qweak measurement will provide a stringent stand alone constraint on Lepto-quark based extensions to the SM.
- Qp_{weak} (semi-leptonic) and E158 (pure leptonic) together make a powerful program to search for and identify new physics.

Overview of the Q^p_{Weak} Experiment

Collimator with 8 openings

 θ = 8° ± 2°

35cm Liquid Hydrogen Target

Polarized Electron Beam

Inelastics

Shieldina

Ring of Integrating Quartz Cherenkov

detectors

Incident beam energy: 1.165 GeV Beam Current: 180 µA

(integration mode)

Beam Polarization: 85% LH₂ target power: 2.5 KW

Central scattering angle: $8.4^{\circ} \pm 3^{\circ}$ Phi Acceptance: 53% of 2π Average O²: 0.030 GeV²

Collimator

Precision Collimator

Acceptance averaged asymmetry: -0.29 ppm Integrated Rate (all sectors): 6.4 GHz

Integrated Rate (all sectors): 6.4 GHz
Integrated Rate (per detector): 800 MHz

Anticipated Q^p_{Weak} Uncertainties

	$\Delta oldsymbol{A}_{ extit{phys}}$ / $oldsymbol{A}_{ extit{phys}}$	$\Delta \mathbf{Q}^p_{weak}/\mathbf{Q}^p_{weak}$
Statistical (2200 hours production) Systematic:	1.8%	2.9%
Hadronic structure uncertainties		1.9%
Beam polarimetry	1.0%	1.6%
Absolute Q ² determination	0.5%	1.1%
Backgrounds	0.5%	0.8%
Helicity-correlated Beam Properties	0.5%	0.8%
Total	2.2%	4.1%

4% error on Q^p_W corresponds to ~0.3% precision on $\sin^2\theta_W$ at Q^2 ~ 0.03 GeV²

$$Q_{W}(p) = [\rho_{NC} + \Delta_{e}][1 - 4\sin^{2}\hat{\theta}_{W}(0) + \Delta_{e}']$$
$$+ \square_{WW} + \square_{ZZ} + \square_{\gamma Z}.$$

(Erler, Kurylov, Ramsey-Musolf, PRD **68**, 016006 (2003)) $Q_{w}^{p} = 0.0716 \pm 0.0006 \quad \text{theoretically} \\ 0.8\% \text{ error comes from QCD uncertainties in box graphs, etc.}$

Nucleon Structure Contributions to the Asymmetry

hadronic:

(31% of asymmetry)
 - contains G^γ_{E,M} G^Z_{E,M}
 Constrained by
 HAPPEX, G⁰, MAMI PVA4

axial:

(4% of asymmetry) contains G^e_A ,
has large electroweak
radiative corrections.
Constrained by G^0 and SAMPLE

Constraints on A_{hadronic} from other Measurements $A_{\text{hadronic}} = Q^4 B(Q^2)$

Quadrature sum of expected $\Delta A_{\text{hadronic}}$ = 1.5% and ΔA_{axial} = 1.2% errors contribute ~1.9% to error on Q_W^P

Qp_{Weak} Toroidal Magnet - QTOR

- ·8 toroidal coils, 4.5m long along beam
- ·Resistive, similar to BLAST magnet
- · Pb shielding between coils
- · Coil holders & frame all Al
- ∫B·dl ~ 0.7 T-m
- bends elastic electrons ~ 10°
- current ~ 9500 A

Status: • coils wound in France

support stand under construction

Inelastic/Elastic Separation in Qp_{Weak}

View Along Beamline of Qp_{Weak} Apparatus - Simulated Events

The Qp_{Weak} Detector and Electronics System

Focal plane detector requirements:

- Insensitivity to background γ , n, π .
- Radiation hardness (expect > 300 kRad).
- · Operation at counting statistics.

Fused Silica (synthetic quartz) Cerenkov detector.

- Plan to use $18 \text{ cm} \times 200 \text{ cm} \times 1.25 \text{ cm}$ quartz
- bars read out at both ends by 5 inch S20
- photocathode PMTs (expect ~ 100 pe/event)
- n =1.47, $\theta_{Cerenkov}$ =47°, total internal reflection θ_{tir} =43°
- reflectivity = 0.997

Electronics (LANL/TRIUMF design):

- · Normally operates in integration mode.
- · Will have connection for pulse mode.
- Low electronic noise contribution. compared to counting statistics.
- 18 bit ADC will allow for 4X over sampling.

Main Detector Response Optimization

Detector noise is due to photoelectrons statistics and shower fluctuations.

1.25 cm thickness

→ 4% increase in statistical error

Tilt angle of the TIR radiator nontrivially affects pe number and collection uniformity.

Jury's Still out on the tilt angle:

Sys. vs Stat. trade-off

TRIUMF MK2 I-V Preamplifier

Gain: $V_{out}/I_{in} = 1 \text{ M}\Omega$ with option of up to 10 M Ω . Set by switches on board.

Output: 0 to +10V. Adjustable \pm 2V offset. Drives 130 m RG-213

Input: 10 μ A range. (e.g. +1 μ A to -9 μ A with +1V offset.). Tolerates 5m of RG-62 on input. (Noise set mainly by input cable length.)

Bandwidth: f_{3db} =30 kHz (settles to <10⁻⁴ in 50 μ s)

Density: two amplifiers per module (one per detector bar).

Uses 5 V DC Supply. Ground fully isolated by internal DC-DC converter. BNC connectors. Center conductor negative on input.

Small size for ease of shielding.

Preamp Irradiation Results

Total dose was 18 kRad, or about 0.2 Joules/gram (Specification is 10 kRad.)

- No observable changes in noise level during or after irradiation (Encouraging since shot noise for 3.5 μA input is much smaller than Qweak counting statistics.)
- More sensitive, post-irradiation measurements at TRIUMF find no long term damage.

Post 18.6 krad irradiation Noise Measurements

(rms noise in 50 kHz band)

MK2 -- 745 pf

MK2 -- 745 pf

Gain (MΩ) Channel 1	Noise (μV_{rms})
1 no cap.	47
1	170
2	325
5	755
10	1240

Gain (M Ω)	Noise (μV_{rms})
Channel 2	· · · · · · · · · · · · · · · · · · ·
0.5 no cap.	26
0.5	95
1	190
2.5	420
5	800

Compare to similar, but un-irradiated amp. with 745 pf

Gain (MΩ)	Noise (μV_{rms})
1	180
2	350
5	775
10	1300
10 no cap.	340

The Qpweak Liquid Hydrogen Target

Target Concept:

- Similar in design to SAMPLE and G^0 targets
 - → longitudinal liquid flow
 - → high stream velocity achieved with perforated, tapered "windsock"

Qp_{Weak} Target parameters/requirements:

- Length = 35 cm
- Beam current = 180 μA
- Power = 2200 W beam + 300 W heater
- Raster size ~4 mm x ~4 mm square
- Flow velocity > 700 cm/s
- Density fluctuations (at 15 Hz) < 5x10⁻⁵
- Use reversal rate of 270 Hz

Helicity Correlated Beam Properties: False Asymmetry Corrections

$$A_{meas} = A_{phys} + \sum_{i=1}^{N} \frac{1}{2Y} \left(\frac{\partial Y}{\partial P_i} \right) \Delta P_i$$

$$\triangle P = P_{+} - P_{-}$$

Y = Detector yield

(P = beam parameter)~energy, position, angle, intensity)

Example:
$$\frac{1}{2Y} \left(\frac{\partial Y}{\partial x} \right) \sim 1.0 \% / \text{mm}, \Delta x = 100 \text{ nm}$$

$$A_{\text{false}} = \frac{1}{2Y} \left(\frac{\partial Y}{\partial x} \right) \Delta x \sim 10^{-6} = 1 \text{ ppm}$$

Typical goals for run-averaged beam properties

Intensity:
$$A_{I} = \frac{I_{+} - I_{-}}{I_{+} + I} < 1 \text{ ppm}$$

Position: Δx , $\Delta y < 2 - 20 \text{ nm}$

$$\Delta P = P_+ - P_-$$

 $\Delta P = P_{\perp} - P_{\perp}$ keep small with feedback and careful setup

$$\frac{1}{2Y} \left(\frac{\partial Y}{\partial P} \right)$$

 $\frac{1}{2V}\left(\frac{\partial Y}{\partial \mathbf{p}}\right)$ keep small with symmetrical detector setup

The Qp_{Weak} Luminosity Monitor

• Luminosity monitor \rightarrow Symmetric array of 8 quartz Cerenkov detectors instrumented with rad hard PMTs operated in "vacuum photodiode mode" & integrating readout at small θ (~ 0.8°).

A integrating readout at small θ (~ 0.8°). Low Q², high rates ~29 GHz/octant.

- Expected signal components: 12 GHz e-e Moeller, 11 GHz e-p elastic, EM showers 6 GHz.
- Expected lumi monitor asymmetry << main detector asymmetry.
- Expected lumi monitor statistical error ~ (1/6) main detector statistical error.

Useful for:

- Sensitive check on helicity-correlated beam parameter corrections procedure.
- Regress out target density fluctuations.

Q² Determination
Use low beam current (~ few nA) to run in "pulse counting" mode with a tracking system to determine the "light-weighted" Q2 distribution.

Region 1 + 2 chambers --> determine value of Q2

Region 3 chamber --> efficiency map of quartz detectors

Tracking Systems

Major Construction effort by university collaborators.

Critical for:

- Checking optics and alignment
- Understanding backgrounds that leave tracks
- Determination of Q²

LaTech

Tracking detector status: VPI

Region I (small GEM):
 reading out half-size prototype

Region II (medium size pair of HDC's) single-plane prototype now understood final design phase

Region III (2.5 m long VDC)
 design complete,
 ordering frames and electronics

W&M

Precision Polarimetry

Hall C has existing ~1% precision Moller polarimeter

- Present limitations:
 - $I_{Max} \sim 10 \mu A$.
 - At higher currents the Fe target depolarizes.
 - Measurement is destructive
- Plan to upgrading Møller:
 - Measure P_{beam} at 100 μA or higher, quasi-continuously
 - Trick: kicker + strip or wire target (early tests look promising tested up to 40 μA so far)
- Schematic of planned new <u>Hall C</u> <u>Compton</u> polarimeter.

Summary

· Completed low energy Standard Model tests are consistent with Standard Model "running of $\sin^2\theta_W$ "

SLAC E158 (running verified at $\sim 6\sigma$ level) - leptonic Cs APV (running verified at $\sim 4\sigma$ level) - semi-leptonic, "d-quark dominated"

Upcoming Q^p_W Experiment

- Precision measurement of the proton's weak charge in the simplest system.
- Sensitive search for new physics with CL of 95% at the ~ 2.3 TeV scale.
- Fundamental 10 σ measurement of the running of $\sin^2\theta_W$ at low energy.
- Currently in process of 3 year construction cycle; goal is to have multiple runs in 2008 2009 timeframe
- Possible 12 GeV Parity-Violating Moller Experiment at JLAB

Conceptual design indicates reduction of E158 error by ~5 may be possible at 12
 GeV JLAB.

weak charge triad \rightarrow (Ramsey-Musolf)

