DIS-Parity: Physics Beyond the Standard Model with Parity NonConserving Deep Inelastic Scattering

Paul E. Reimer
Argonne National Laboratory
10 January 2003

- Introduction: Weinberg-Salam Model and $\sin^2(\theta_W)$
- Parity NonConserving Electron Deep Inelastic Scattering
- 11 GeV Measurement at Jefferson Laboratory

Work done in collaboration with Peter Bosted, Dave Mack et al.
Weinberg-Salam model and $\sin^2(\theta_W)$

Unification of Weak and E&M Force
- SU(2)—weak isospin—Triplet of gauge bosons
- U(1)—weak hypercharge—Single gauge boson

Electroweak Lagrangian:

$$\mathcal{L} = g \vec{J}_\mu \cdot \vec{W}_\mu + g' J^Y_\mu B_\mu \quad J^Y_\mu = J^{EM}_\mu - J^{(3)}_\mu$$

J_μ, J^Y_μ isospin and hypercharge currents
g, g^0 couplings between currents and fields

$$W^\pm_\mu = \frac{1}{\sqrt{2}} \left(W^{(1)}_\mu \pm i W^{(2)}_\mu \right) \quad \text{Weak CC}$$

$$A_\mu = \frac{1}{\sqrt{g^2 + g'^2}} \left(g' W^{(3)}_\mu + g B_\mu \right) \quad \text{EM NC}$$

$$Z^0_\mu = \frac{1}{\sqrt{g^2 + g'^2}} \left(g' W^{(3)}_\mu - g B_\mu \right) \quad \text{Weak NC}$$

θ_W, relative strength of the SU(2) and U(1) couplings:

$$\tan \theta_W = \frac{g'}{g} \quad \sin \theta_W = \frac{g'}{\sqrt{g'^2 + g^2}}$$

$$\cos \theta_W = \frac{g}{\sqrt{g'^2 + g^2}}$$

θ_W, relative strength of the SU(2) and U(1) couplings:

- Observables:
 - $Q_{EM} \ e = g \sin(\theta_W)$
 - $\sin^2(\theta_W) = 1 - \frac{M_W^2}{M_Z^2}$.

10 January 2003 Paul E. Reimer, Argonne National Laboratory
\(\sin^2(\theta_W) \text{ vs. } Q^2 \)

- Standard Model predicts \(\sin^2(\theta_W) \) varies (runs) with \(Q^2 \)
 - Well measured at Z-pole, but not at other \(Q^2 \).
 - Running sensitive to non-Standard Model Physics.
 - Different measurements sensitive to different non-S.M. physics.
- \(\sin^2(\theta_W) \) is *scheme dependent* observable—it’s value depends on the renormalization scheme.
\[\sin^2(\theta_W) \] measurements below Z-pole

- **NuTeV νA scattering:**
 - 3σ from Standard Model!!!
 - *Fe* target: PDF’s in iron? Nuclear corrections—NC vs. CC?

- **Atomic Parity Violation (APV):**
 - Good measurement, hard to understand theoretically.
 - *Appears* to differ from S.M.??

- **\(Q_{\text{weak}} \) (Jlab):**
 - \(Q_{\text{weak}} \) PROTON
 - 1/42005-07

- **E158-Moller**
 - \(Q_{\text{Weak}} \) ELECTRON
 - *Final run 2004*

- **DIS-Parity:**
 - 11 GeV JLab Deep Inelastic Scattering Parity violation.
 - Deuterium/Hydrogen target.
 - \(Q^2 = 3.5 \text{ GeV}^2 \) (\(Q = 1.9 \text{ GeV} \))
Polarized $e^- deuterium$ DIS

Look for left-right asymmetry in polarized eD deep inelastic scattering

- Asymmetry caused by interference between Z^0 and γ diagrams.

- Use deuterium target: $u(x) \neq d(x)$

- Large asymmetry: $A_d \frac{1}{10} 10^{-4}$
DIS Formalism

\[A_d = \frac{\sigma_L - \sigma_R}{\sigma_L + \sigma_R} \]

Longitudinally polarized electrons on unpolarized isoscaler (deuterium) target (derivation is problem for listener).

\[
Y = \frac{1 - (1 - y)^2}{1 + (1 - y)^2 - y^2 R / (1 + R)}
\]

\[
R(x, Q^2) = \frac{\sigma_L}{\sigma_R} \approx 0.2
\]

\[
C_{1q} \begin{array}{c} \text{NC vector coupling to } q \\ \text{NC axial coupling to } e \end{array}
\]

\[
C_{2q} \begin{array}{c} \text{NC axial coupling to } q \\ \text{NC vector coupling to } e \end{array}
\]

\[
R_s(x) = \frac{2s(x)}{u(x) + d(x)} \overset{\text{large } x}{\longrightarrow} 0
\]

\[
R_v(x) = \frac{u_v(x) + d_v(x)}{u(x) + d(x)} \overset{\text{large } x}{\longrightarrow} 1
\]

\[
C_{1u} = -\frac{1}{2} + \frac{4}{3} \sin^2 (\theta_W) \approx -0.19
\]

\[
C_{1d} = \frac{1}{2} - \frac{2}{3} \sin^2 (\theta_W) \approx 0.35
\]

\[
C_{2u} = -\frac{1}{2} + 2 \sin^2 (\theta_W) \approx -0.04
\]

\[
C_{2d} = \frac{1}{2} - 2 \sin^2 (\theta_W) \approx 0.04
\]

Note that each of the C_{ia} are sensitive to different possible S.M. extensions.
Repeat SLAC experiment (30 years later) with better statistics and systematics at 12 GeV Jefferson Lab:

- Beam current 100 µA vs. 4 µA at SLAC in ’78
- 60 cm target vs. 30 cm target
- P_e (=electron polarization) = 80% vs. 37%
- $\delta P_e \frac{1}{4} 1\%$ vs. 6%

Finally we discuss a very delicate experiment to detect tiny parity-violation effects (asymmetries) due to the interference between Z^0 and γ-exchange in inelastic scattering of polarized electrons by deuterons. The experiment was carried out with beams of electrons of 16–22-GeV/c momentum at SLAC, the reaction being

$$e_{L,R}^- + d_{\text{unpolarized}} \to e^- + X,$$
Experimental Constraints and Kinematics

- Small sea quark uncertainties $x > 0.3$
- Better sensitivity to $\sin^2(\theta_W)$ Large Y
- DIS region, minimize higher twist $Q^2 > 2.0 \text{ GeV}^2$
- $W^2 > 4.0 \text{ GeV}^2$

- $d(x)/u(x)$ uncertainties deuterium target
- Pion and other backgrounds $E_0 > 0.3 \ (y < 0.7)$

Quick calculations show that these conditions are best matched with an 11 GeV beam and an electron scattering angle of approximately $10^\pm 15^\pm (12.5^\pm)$.

$$\begin{align*}
\hbar_{xi} &= 0.45 \\
\hbar_{Q^2i} &= 3.5 \text{ GeV}^2 \\
\hbar_{Yi} &= 0.46 \\
\hbar_{W^2i} &= 5.23 \text{ GeV}^2 \\
\frac{\delta \sin^2 \theta_W}{\sin^2 \theta_W} \bigg|_{Y=0.46} &\approx \frac{1}{2} \left(\frac{\delta A_d}{A_d} \right) \\
A_d &\approx 2.9 \times 10^{-4}
\end{align*}$$
Detector and Expected Rates

• **Expt. Assumptions:**
 - 60 cm ld_2/lH_2 target
 - 11 GeV beam @ 90μA
 - 75% polar.
 - 12.5^{\pm} central angle
 - 12 msr $d\Omega$
 - 6.8 GeV$£$ 10% momentum bite

• **Rate expectations:**
 - 1MHz DIS
 - $\pi/e \frac{1}{4} 1$ 1 MHz pions
 - 2 MHz Total rate
 - $dA/A = 0.5\%$ 345 hrs (ideal) plus time for H_2 and systematics studies.

- **Will work in either Hall C (HMS +SHMS) or Hall A (MAD)**
- π/e separation requires gas Cherenkov counters $\frac{1}{4}6$ GeV thresh.
- Ignore tracking in detectors
- Rate requires flash ADC’s on Cherenkov and Calorimeters—this is a counting experiment!!
Uncertainties in A_d

- **Beam Polarization:**
 - QWeak also needs 1.4% polarization accuracy.
 - Hall C Moller has achieved 0.5% polarization accuracy.

- **Higher twists may enter in at this low of Q^2:**
 - Check by taking additional data at lower Q^2
 - 12.5±—11 GeV and 15±—8 GeV data
 - Possible 6 GeV experiment?

- **EMC effect in d_2**
 - Check with proton data in region where d/u is known.

<table>
<thead>
<tr>
<th>Uncertainty</th>
<th>Uncertainty Type</th>
<th>Uncertainty Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statistical</td>
<td></td>
<td>0.5%</td>
</tr>
<tr>
<td>Beam polarization</td>
<td></td>
<td>1.0%</td>
</tr>
<tr>
<td>δQ^2</td>
<td></td>
<td>0.5%</td>
</tr>
<tr>
<td>Radiative corr.</td>
<td></td>
<td><1%</td>
</tr>
<tr>
<td>$\delta R = \delta(\sigma_L/\sigma_T)$</td>
<td>§ 15%</td>
<td><0.02%</td>
</tr>
<tr>
<td>$\delta s(x) = $§ 10%</td>
<td></td>
<td><0.03%</td>
</tr>
<tr>
<td>Higher Twist</td>
<td></td>
<td>????</td>
</tr>
<tr>
<td>EMC Effect</td>
<td></td>
<td>????</td>
</tr>
</tbody>
</table>
Expected $\sin^2(\theta_W)$ Results

$$A = f \left[\alpha + \beta \sin^2(\theta_W) \right] \quad A = 1.1 \times 10^{-4} Q^2 \left[2.2 - 6.1 \sin^2(\theta_W) \right]$$

$$\frac{\delta \sin^2(\theta_W)}{\sin^2(\theta_W)} = \frac{\delta A}{A} \frac{1}{\alpha + \beta \sin^2(\theta_W)} \frac{\alpha + \beta \sin^2(\theta_W)}{\sin^2(\theta_W)}$$

Measure A_d to § 0.5% stat § 1.1% syst. (1.24% combined)

- Measurement uncertainties driven by polarization uncertainties

$$\left. \frac{\delta \sin^2 \theta_W}{\sin^2 \theta_W} \right|_{Y=0.46} = 0.56 \left(\frac{\delta A_d}{A_d} \right) = 0.7\%$$

What about C_{iq}'s?
Extracted Signal—It’s all in the binning

\[
\frac{A_d}{1.1 \times 10^{-4} Q^2} \approx - [(2C_{1u} - C_{1d}) + Y (2C_{2u} - C_{2d})]
\]

PDG: \(C_{1u} = -0.209 \pm 0.041 \) highly correlated
\(C_{1d} = 0.358 \pm 0.037 \) correlated

\(2C_{2u} - C_{2d} = -0.08 \pm 0.24 \)

This measurement:
\(\delta(2C_{1u} - C_{1d}) = 0.03 \) (stat.)
\(\delta(2C_{2u} - C_{2d}) = 0.06 \) (stat.)

(without considering other expts.)

Note—Polarization uncertainty enters as in slope and intercept
\[
A_{\text{obs}} = PA_d / P(2C_{1u} - C_{1d}) + P(2C_{2u} - C_{2d})Y
\]
but is correlated
Constraints with DIS-Parity

\[C_{1q} \] \text{NC vector coupling to } q
\[\not{\mathbf{f}} \text{NC axial coupling to } e \]

\[C_{2q} \] \text{NC axial coupling to } q
\[\mathbf{f} \text{NC vector coupling to } e \]
Constraints with DIS-Parity

DIS-Parity provides intersecting constraints on \(C_{ia} \) parameters:

\[
\delta(2C_{1u} - C_{1d}) = 0.03 \text{ (stat.)} \quad \delta(2C_{2u} - C_{2d}) = 0.06 \text{ (stat.)}
\]

(1\(\sigma \) limits)
QWeak & APV will Constrain C_{1u} & C_{1d}

Combined expected Qweak (proton) and APV measurements give a better value for C_{1u} and C_{1d}. Will provide an “anchor” point for fit. Very useful in determining $2C_{2u} - C_{2d}$.

\[\delta(2C_{1u} - C_{1d}) = 0.005 \]
\[\delta(2C_{2u} - C_{2d}) = 0.014 \]
DIS-Parity determines $2C_{2u} - C_{2d}$

Combined result significantly constrains $2C_{2u} - C_{2d}$.

PDG $2C_{2u} - C_{2d} = -0.08 \pm 0.24$ Combined $\delta(2C_{2u} - C_{2d}) = \pm 0.014$

£ 17 improvement (S.M $2C_{2u} - C_{2d} = 0.0986$)
DIS-Parity: Conclusions

- Measurements of $\sin^2(\theta_W)$ below M_Z provide strict tests of the Standard Model.
- Parity NonConserving DIS provides complimentary sensitivity to other planned measurements.
- DIS-Parity Violation measurements can be carried out at Jefferson Lab with the 12 GeV upgrade (beam and detectors) in either Hall A or Hall C.

\[
\begin{align*}
\delta (2C_{1u} - C_{1d}) &= 0.005 \\
\delta (2C_{2u} - C_{2d}) &= 0.014
\end{align*}
\]
Weinberg-Salam model and $\sin^2(\theta_W)$

Unification of Weak and E&M Force
- SU(2)—weak isospin—Triplet of gauge bosons
- U(1)—weak hypercharge—Single gauge boson

Electroweak Lagrangian:

$$\mathcal{L} = g \vec{J}_\mu \cdot \vec{W}_\mu + g' J^Y_\mu B_\mu$$

$$J^Y_\mu = J^{\text{EM}}_\mu - J^{(3)}_\mu$$

J_μ, J^y_μ isospin and hypercharge currents

g, g^0 couplings between currents and fields

$$W^{\pm}_\mu = \frac{1}{\sqrt{2}} \left(W^{(1)}_\mu \pm i W^{(2)}_\mu \right)$$ Weak CC

$$A_\mu = \frac{1}{\sqrt{g^2 + g'^2}} \left(g' W^{(3)}_\mu + g B_\mu \right)$$ EM NC

$$Z^0_\mu = \frac{1}{\sqrt{g^2 + g'^2}} \left(g' W^{(3)}_\mu - g B_\mu \right)$$ Weak NC

$$\tan \theta_W = \frac{g'}{g} \quad \sin \theta_W = \frac{g'}{\sqrt{g'^2 + g^2}}$$

$$\cos \theta_W = \frac{g}{\sqrt{g'^2 + g^2}}$$

- Observables: $Q_{\text{EM}} \cdot e = g \sin(\theta_W)$

$\sin^2(\theta_W) = 1 - M^2_W/M^2_Z$.

- θ_w, relative strength of the SU(2) and U(1) couplings: $\tan(\theta_w) \approx g^0 g$

- Standard Model predicts $\sin^2(\theta_w)$ varies (runs) with Q^2
 - Well measured at Z-pole, but not at other Q^2.

- Running sensitive to non-Standard Model Physics.

- Different measurements sensitive to different non-S.M. physics.

- $\sin^2(\theta_w)$ is scheme dependent observable—it’s value depends on the renormalization scheme.
Additional Possibilities with H_2

- Asymmetry in $\sigma_d - 2\sigma_p$
 - Interpretation does not require knowledge of parton distributions.

\[
A_{d2p} = \frac{\sigma_d^L - \sigma_d^R - 2(\sigma_p^L - \sigma_p^R)}{\sigma_d^L + \sigma_d^R - 2(\sigma_p^L + \sigma_p^R)}
\]
\[
= \left(\frac{G_F Q^2}{\pi \alpha^2 2\sqrt{2}}\right) \left[\frac{1}{2} + 2\sin^2(\theta_W)\right] \times [1 + Y]
\]
\[
\approx -0.65 \times 10^{-5} Q^2 (1 + Y)
\]

- Ratio of asymmetries: A_p/A_d
 - If C_{1a}'s are known, measures $r(x) \frac{1}{4} d(x)/u(x)$ at large x.
 - Polarization cancels out.

\[
\left(\frac{A_p}{A_d}\right) = \left(\frac{2C_{1u} - r(x) C_{1d}}{2C_{1u} - C_{1d}}\right) \left(\frac{5}{4 + r(x)}\right)
\]
\[
r(x) \approx d(x)/u(x)
\]

- s-quark distribution at low x: A_p
 - Q^2 possibly not high enough at Jlab 11 GeV.
$R_s(x)$ and $R_v(x)$

$$R_s(x) = \frac{2s(x)}{u(x) + d(x)} \xrightarrow{\text{large } x} 0$$

$$R_v(x) = \frac{u_v(x) + d_v(x)}{u(x) + d(x)} \xrightarrow{\text{large } x} 1$$

Uncertainties in PDF’s are now known and would be factored into overall error budget.