SHMS AEROGEL OVERVIEW

The Catholic University of America

Tanja Horn, Marco A. P. Carmignotto, Ibrahim Albayrak, Laura Rothgeb, Michael Metz,

Nathaniel Hlavin

University of South Carolina

Yordanka Illieva, Kevin Wood

Mississippi State University

Dipangkar Dutta

Florida International University

Joerg Reinhold

Yerevan Physics Institute

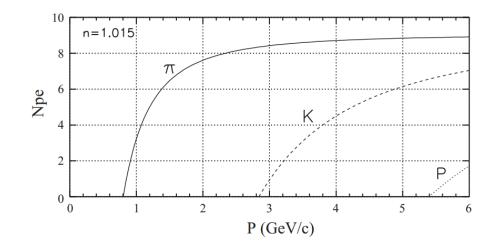
Hamlet Mkrtchyan, Arthur Mkrtchyan, Arshak Asaturyan, Vardan Tadevosyan, S.

Zhamkochyan

01/13/2012 Hall C Users Meeting

Why an Aerogel detector? (PID)

Access to strangeness physics


Particle IDentification

SHMS base detector system provides particle identification for *e*, π , *p* over the full momentum range

- Noble gas Cerenkov: e/π
- Heavy gas Cerenkov: π/K
- But no K/p!

• Lead glass: e/π

Kaon x Proton → AEROGEL CERENKOV DETECTOR

R. Asaturyan *et al*, "The aerogel threshold Cherenkov detector for the High Momentum Spectrometer in Hall C at Jefferson Lab", NIM-A (2005)

SHMS (e,e'K⁺) program in Hall C

To date four experiments have been approved for Hall C at 11 GeV that will use this detector

Experiment	Physics Motivation	SHMS Momenta (GeV/c)	Worst Fore/Bkd Rate Ratio
Color Transparency (E12-06-107)	 vanishing of <i>h</i>-N interaction at high Q. exclusive π, K production from nuclei. 	5.1-9.6	1(K):10(p)
SIDIS p _T (E12-09-017)	• extract mean k_T of u,d,s quarks in proton. • SIDIS π , K production.	1.5-5.0	
SIDIS R (E12-06-104)	• Measure the ratio $R = \sigma_L / \sigma_T$ • SIDIS, π , K production.	1.5-5.0	
Kaon Factorization (E12-09-011)	study of soft-hard factorization in exclusive K+ production. L/T separations vs. Q2, t.	2.6-7.1	1(K):3(p)

Kaon aerogel project

Current Status:

CUA

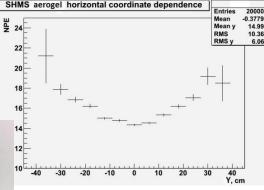
- Detector box construction
- •GEANT4 simulations
- Aerogel material and PMT studies

Yerevan Physics Institute → talk by Arthur Mkrtchyan

- GEANT4 simulations
- Prototype for aerogel material tests
- Aerogel material and PMT quality studies

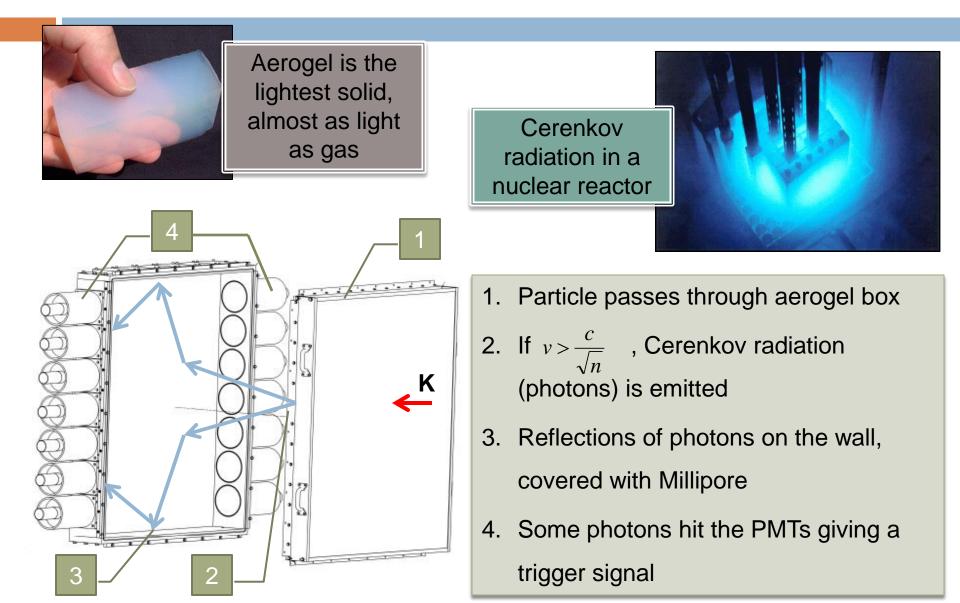
Florida International University

Response of large diameter PMTs in a magnetic field

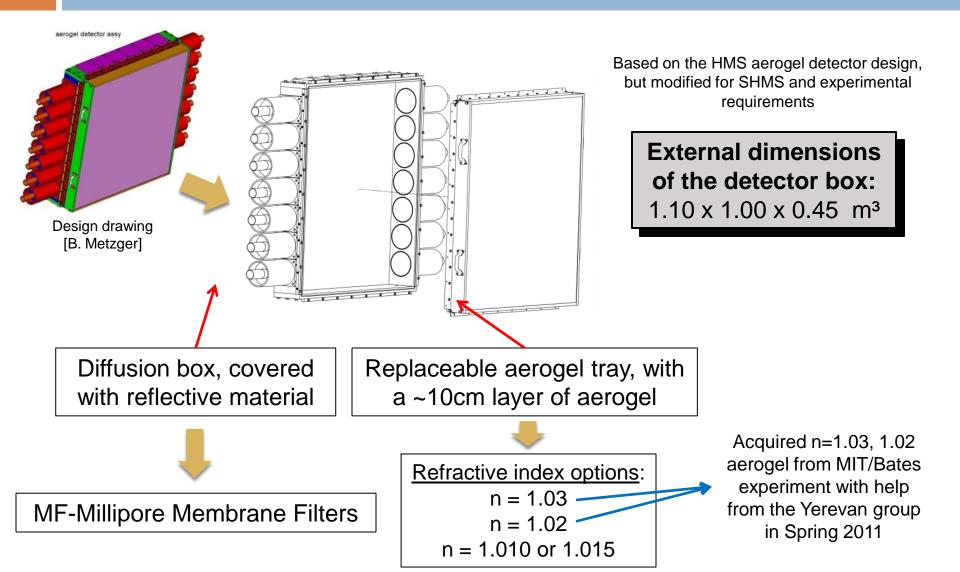

University of South Carolina

Initial PMT gain testing during summer 2011

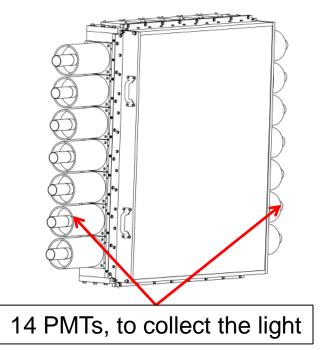
Mississippi State University


• Third aerogel index

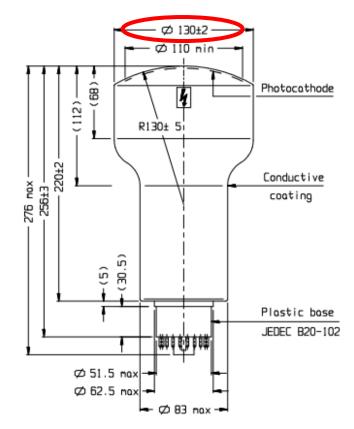
NSF-MRI Consortium (NSF-PHY-1039446)



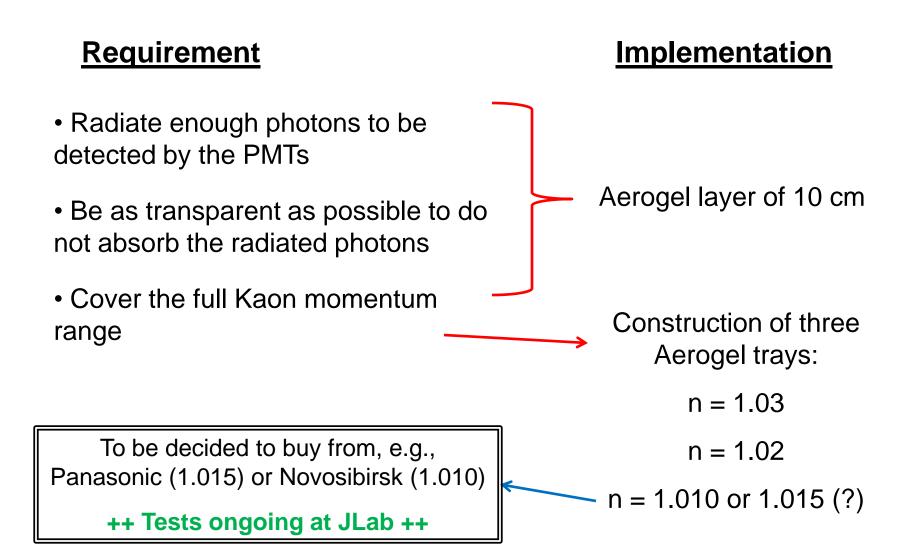
Aerogel detector concepts



SHMS aerogel detector design


SHMS aerogel detector design

Photosensors


 Acquired ~65 5-inch PMTs from MIT/Bates experiment with help from the Yerevan group in Spring 2011

Dimensions in millimeters

Detector design considerations

Detector construction

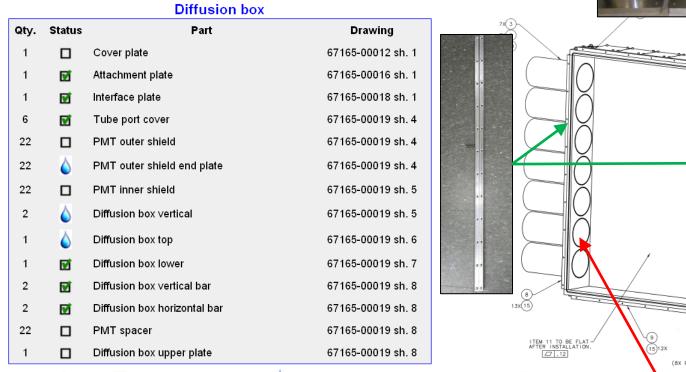
- 01 diffusion box
- 03 aerogel trays

Detector box construction

All materials for the detector box have been purchased in fall 2011

Construction ongoing in CUA machine shop

CUA Machine Shop



Paul

Michael

Progress on various parts of the box

22 x

27X (20)28X

(B) -(15) 13X

(Legend: 📷 is ready, 🔁 is being milled at the moment, 🛆 was cutted (water cutting) for future milling and 🔲 is not milled)

For construction updates see our Wiki: http://www.vsl.cua.edu/cua_phy/index. php/MainPage:Nuclear:KaonDetector

2 x

(20)24X

03 Aerogel trays construction

Aerogel tray construction will start this spring

Qty.	Status	Part	Drawing
3x2		Aerogel box ∨ertical	67165-00020 sh. 3
3x2		Aerogel box horizontal	67165-00020 sh. 4
3x2		Aerogel box vertical angle	67165-00020 sh. 5
3x2		Aerogel box horizontal angle	67165-00020 sh. 5
3x1		Aerogel box bottom plate	67165-00020 sh. 5

For construction updates see our Wiki:


http://www.vsl.cua.edu/cua_phy/index.php/MainPage:Nuclear:KaonDetector

Aerogel material and PMT studies

- PMT characterization
- Aerogel tile characterization

PMT characterization

Initial gain test at JLab:

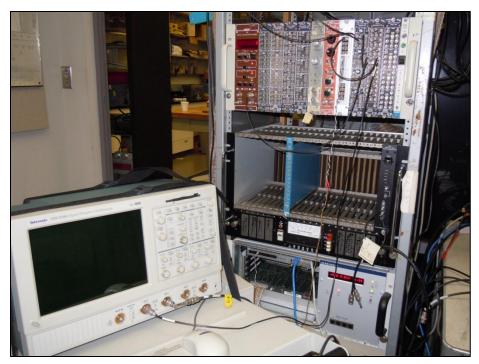
Example of gain test for four PMTs

Done in the summer of 2011 <u>CUA</u>, <u>Yerevan Physics Institute</u>, <u>USC, MSU</u>

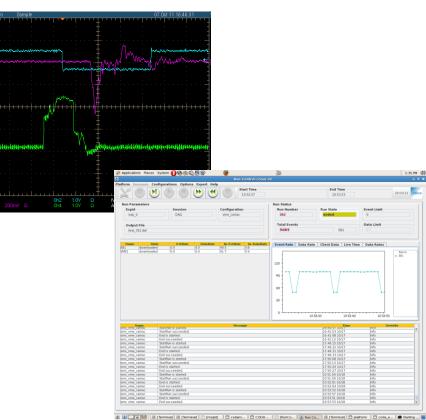
33 of the 65 acquired PMTs were analyzed

PMT s/n	Base s/n	LED intensity (V)			
09592	76	2.5			
Run (#)	hV (V)	Pedestal (channel)	Pedestal Error	Gain	Gain Error
1881	1600	73.05	0.01	2.29E07	4.83E05
1882	1700	73.05	0.01	3.71E07	7.82E05
1887	1800	72.96	0.01	5.98E07	1.28E06
1888	1900	73.02	0.01	9.45E07	1.95E06
1889	2000	72.79	0.01	1.42E08	2.94E06
1890	2100	72.9	0.0	2.08E08	4.33E06
1891	2200	72.8	0.0) 2.97E08	6.13E06
1892	2300	72.28	0.01	4.26E08	8.96E06
1893	2400	71.72	0.01	5.98E08	1.26E07
U. 1.					

For full table see our Wiki:

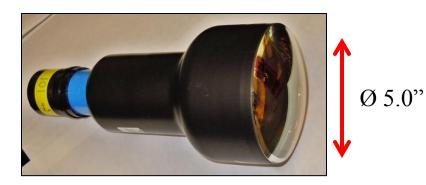

http://www.vsl.cua.edu/cua_phy/index.php/MainPage:Nuclear:KaonDetect

PMT characterization at CUA


We built a simple data acquisition system at CUA to carry out further PMT tests in summer/fall 2011

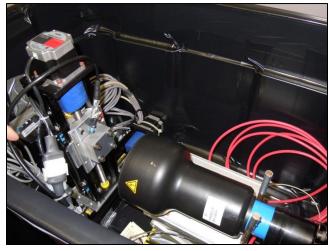
System is ready for PMT tests and initial tests have been performed

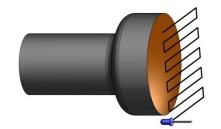
CAMAC crate with ADC, using CODA software to extract data



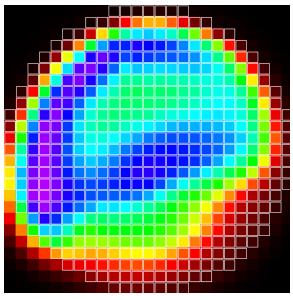
PMT characterization at CUA

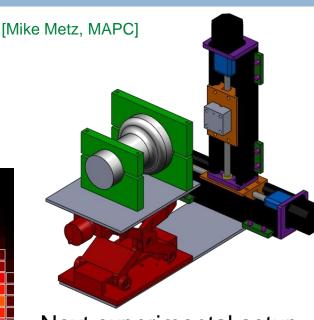
PMT gain test:


- Reproduce the gain curve of PMTs tested at JLab
- Analyze other PMTs

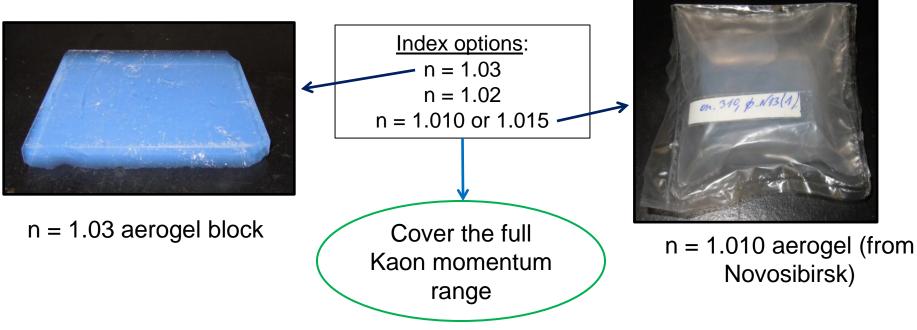

[Nathaniel Hlavin, MAPC]

PMT characterization at CUA


Large PMT incident light position dependence:


25 x 25 matrix scanning

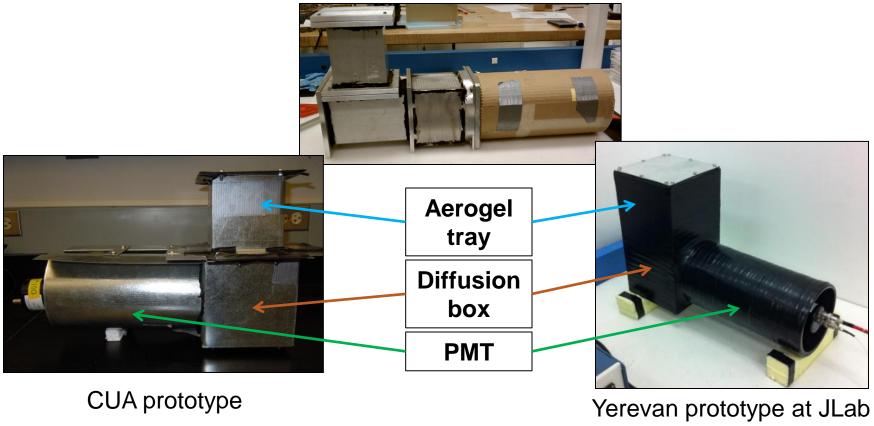
25 x 25 matrix scanning


Due to some misalignment?

Next experimental setup, reducing alignment tolerance

CAMAC crate with ADC, using CODA software to extract data

Aerogel material characterization


Aerogel material tests (ongoing and to be done):

- Decide on lowest index
- Quality tests of aerogel material, e.g., transmission properties
- Refractive index, surface coating, etc.

Prototypes for aerogel tests

Construction of test setup/prototypes:

1st version of the prototype used in summer 2011

[see Arthur Mkrtchyan talk]

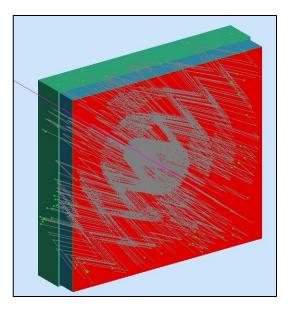
Aerogel material tests at CUA

Planned tests in spring 2012:

Refractive index analyzes

A. R. Buzykaev et al, "Mearusement of optical parameters of aerogel", NIM-A (1999) laser beam L γ х aerogel 1061.916 164.909 270.407-Surface coating analysis manutinin VSL materials science laboratories 187.50

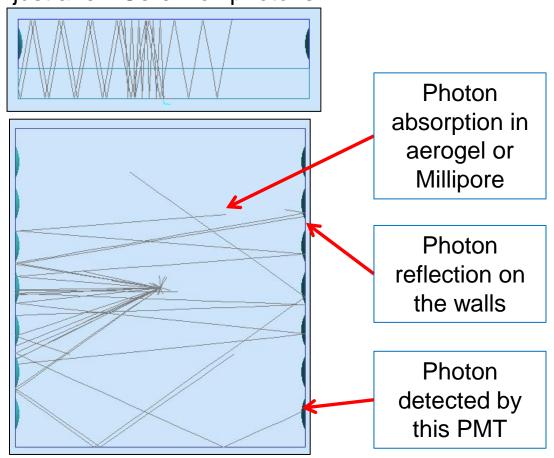
Analysis on the refractive index using a laser beam


Transmission analyzes

GEANT4/GEMC simulations

GEMC: https://gemc.jlab.org/gemc/Home.html

Aerogel detector in GEMC


Detector construction in GEMC:

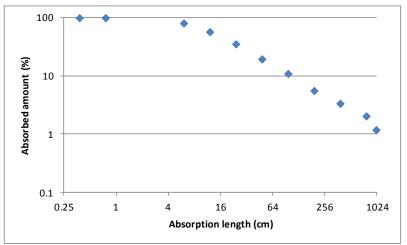
One Kaon passing through the detector and generating Cerenkov photons (gray lines)

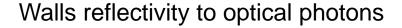
[MAPC]

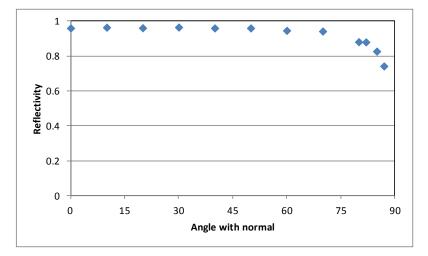
Side view of a simulation, showing just a few Cerenkov photons

Upper view of the simulation

Aerogel detector in GEMC


Configuring simulation parameters recompiling GEMC:


Definition of the walls reflectivity


Definition of the aerogel characteristics (refractive index, absorption length, Cerenkov photons generation)

PMT detection efficiency

Absorption in aerogel (controlling its absorption length parameter)

Summary and Outlook

- Detector box materials procurement complete and machining ongoing
- □ Aerogel and PMTs have been procured from MIT/Bates experiment
- □ DAQ system built at CUA for PMT and aerogel tests
- Quality tests of PMTs and aerogel will continue this spring and summer
 - Prototypes have been built at Jlab and CUA
 - Modification of PMT HV bases and addition of amplifiers
 - Decision on third refractive index
- □ GEANT4 simulations of detector have started

More details on simulation and experimental tests in the next talks: SHMS Shower Counter – Arthur Mkrtchyan SHMS Aerogel Construction Details – Laura Rothgeb and Nathaniel Hlavin

Acknowledgments

All the people that are collaborating to this project

Jefferson Lab Staff and Users