Qweak Ancillary Measurement:

Parity-Violating Inelastic $\vec{e} p$ Asymmetry at 3.35 GeV

James Dowd
For the Qweak Collaboration
Jan 15-16, 2015

Ancillary Measurement

- For ~2 weeks, Qweak received polarized electron beam at higher than nominal beam energy
- Opportunity to make an ancillary measurement
- Kinematics tuned to the inelastic region
- Conducive to probing $F_{1,3}^{\gamma Z}$
- We quickly developed a detector system

Kinematics

Radiative Corrections

Including $1^{\text {st }}$ order corrections, the proton's weak charge is:

Dominated by large momentum transfer \& can be calculated by perturbative QCD

γZ-Box

Including $1^{\text {st }}$ order corrections, the proton's weak charge is:

γZ-Box

Oldest	$\mathfrak{R e} \square_{\gamma Z}^{V} \times 10^{3}$ evaluated at $\mathrm{E}=1.165 \mathrm{GeV}$.	
	Sibirtsev et al. [1]	$4.7{ }_{-0.4}^{+1.1}$
	Rislow and Carlson [2]	5.7 ± 0.9
	Gorchtein et al. [3]	5.4 ± 2.0
Newest	Hall et al. [4]	5.60 ± 0.36

$\mathfrak{R e} \square_{\gamma Z}^{A} \times 10^{3}$ evaluated at $\mathrm{E}=1.165 \mathrm{GeV}$.

- Gorchtein and Horowitz showed γZ-box contribution
- Energy dependent
- Larger than originally expected ($\sim 8 \%$ of Q_{W}^{p})
- Uncertainty of correction could affect precision aim of Qweak
- Recent thorough analysis of both axial and vector components

$F_{1,2,3}^{\gamma Z}$ Structure Functions

For forward scattering, the dispersion relation is:

Using the optical theorem,

$$
2 \mathfrak{I m} \mathcal{M}_{\gamma Z}^{(P V)}=-4 \sqrt{2} \pi M G_{F} \int \frac{d^{3} k^{\prime}}{(2 \pi)^{3} 2 E_{k^{\prime}}}\left(\frac{4 \pi \alpha}{Q^{2}}\right) \frac{1}{1+Q^{2} / M_{Z}^{2}} L_{\mu \nu}^{\gamma Z} W_{\gamma Z}^{\mu \nu}
$$

where

$$
\begin{aligned}
L_{\mu \nu}^{\gamma Z} & =\bar{u}(k, \lambda)\left(g_{V}^{e} \gamma_{\mu}-g_{A}^{e} \gamma_{\mu} \gamma_{5}\right) k^{\prime} \gamma_{\nu} u(k, \lambda) \\
M W_{\gamma Z}^{\mu \nu} & =-g^{\mu v} F_{1}^{\gamma Z}+\frac{p^{\mu} p^{v}}{p \cdot q} F_{2}^{\gamma Z}-i \epsilon^{\mu \nu \lambda \rho} \frac{p_{\lambda} p_{\rho}}{2 p \cdot q} F_{3}^{\gamma Z}
\end{aligned}
$$

Combining everything, the imaginary part of the correction becomes

$$
\mathfrak{J m}_{\gamma Z}^{V}\left(E^{\prime}\right)=\frac{1}{\left(s-M^{2}\right)^{2}} \int_{W_{\pi}^{2}}^{s} d W^{2} \int_{0}^{Q_{\max }^{2}} d Q^{2} \frac{\alpha\left(Q^{2}\right)}{1+Q^{2} / M_{Z}^{2}}\left[F_{1}^{\gamma Z}+\frac{s\left(Q_{\max }^{2}-Q^{2}\right)}{Q^{2}\left(W^{2}-M^{2}+Q^{2}\right)} F_{2}^{\gamma Z}\right]
$$

$$
\text { With } s=M^{2}+2 M E, \quad W_{\pi}^{2}=\left(M+m_{\pi}\right)^{2}, \quad \text { and } Q_{\max }^{2}=2 M E\left(1-W^{2} / s\right)
$$

$F_{1}^{\gamma Z}$ 1,2,3
 Structure Functions

Integral divided into several regions:

- Region I - Described by the ChristyBosted $F_{1,2}^{\gamma \gamma}$ fit, transformed to the γZ case
- Region II - GHRM Model II, transformed to γZ
- Region III - Global PDF fits to highenergy data

$$
\mathfrak{J m}_{\gamma Z}^{V}\left(E^{\prime}\right)=\frac{1}{\left(s-M^{2}\right)^{2}} \int_{W_{\pi}^{2}}^{s} d W^{2} \int_{0}^{Q_{\max }^{2}} d Q^{2} \frac{\alpha\left(Q^{2}\right)}{1+Q^{2} / M_{Z}^{2}}\left[F_{1}^{\gamma Z}+\frac{s\left(Q_{\max }^{2}-Q^{2}\right)}{Q^{2}\left(W^{2}-M^{2}+Q^{2}\right)} F_{2}^{\gamma Z}\right]
$$

Non-Resonant inelastic PV measurement

Beam Energy $=3.35 \mathrm{GeV}$
$\mathrm{W}=2.23 \mathrm{GeV}$
$\mathrm{Q}^{2}=0.09 \mathrm{GeV}^{2}$

Predicted
$A_{P V}^{p} \sim(-7.8 \pm 0.6) \mathrm{ppm}$

An asymmetry measurement will constrain $F_{1,3}^{\gamma Z}$

- Asymmetry measurement lies in the non-resonant inelastic region
- In a kinematic region with almost no experimental data

Data Analysis

- Large W leads to large pion background
- Pion and electron signals are integrated together
- Pion dilution is the largest systematic uncertainty
- Elastic ep radiative tail
- Well understood
- Partially transversely polarized beam
- ~37\% transverse
- Pions have a large transverse asymmetry

Signal Extraction

- At 3.35 GeV , signals in the Čerenkov detectors will be a combination of $\pi^{-} \& e^{-}$
- Majority of data was taken with 4" lead in front of lowest Čerenkov Detector
- The lead wall ranges out most of the electrons.
- ~18 radiation lengths

Signal Extraction

- At 3.35 GeV , signals in the Čerenkov detectors will be a combination of $\pi^{-} \& e^{-}$
- Majority of data was taken with 4" lead in front of lowest Čerenkov Detector
- The lead wall ranges out most of the electrons.
- ~18 radiation lengths

Detector 7 sees mostly pions

Lead Wall Simulation

- GEANT4 Simulation
- Electron signal is highly suppressed with increasing wall thickness
- Lead wall isolates pions
- Blocked Čerenkov detector becomes a pion detector

Integrated PE Yield

ADC Light Spectra

- Some event mode data taken
- Each event is tracked and counted separately
- Pion rate greater than electron rate by factor of ~ 2
- Pions produce less light than electrons by a factor of ~6
- Electron signal enhanced by lead pre-radiators
- Fitting spectra will help us

Light Spectrum of an Unblocked Octant
 determine the pion fraction

Photo-Electron Spectrum Fit

- Fit data with GEANT4 pion and electron simulations
- Removed electronic pedestal
- Applied a 3 parameter fit
- Pion Amplitude
- Electron Amplitude
- Gain Factor [PEs/ADC channel]
- Simulation under-predicts between electron and pion peaks

Beam Polarization at 3.35 GeV

- Data shown
- Uncorrected
- Blinded

- Main measurement beam polarization
- $\sim 0.93 * P_{\text {Beam }}$ Longitudinal
- $\sim 0.37 * P_{\text {Beam }}$ Transverse
- Azimuthally symmetric detectors
- Pure transverse measurement beam polarization
- $\sim 1.0 * P_{\text {Beam }}$ Transverse
- Note the large transverse pion asymmetry with opposite sign

Transverse Calibration Measurement

* Octant 7 with lead wall excluded from fit

Extracting $A_{P V}^{e}$

Parity-Violating Pion Asymmetry

$$
A_{m i x}^{M D 7}=P_{T} A_{T}^{M D 7}+P_{L} A_{P V}^{M D 7}
$$

$\Rightarrow A_{P V}^{M D 7}=\frac{1}{P_{L}}\left(A_{m i x}^{M D 7}-P_{T} A_{T}^{M D 7}\right) \approx A_{\mathrm{PV}}^{\pi}$

Parity-Violating Electron Asymmetry

$$
\begin{aligned}
& A_{P V}=\left(1-\boldsymbol{f}_{\boldsymbol{\pi}}\right) A_{P V}^{e}+\boldsymbol{f}_{\boldsymbol{\pi}} A_{P V}^{\pi} \\
& \Rightarrow A_{P V}^{e}=\frac{A_{P V}-f_{\pi} A_{P V}^{\pi}}{1-\boldsymbol{f}_{\boldsymbol{\pi}}} \\
& \text { Asymmetry result is } \\
& \text { highly dependent on } \boldsymbol{f}_{\pi}
\end{aligned}
$$

Transverse Calibration Measurement

* Octant 7 with lead wall excluded from fit

Summary

- Pion fraction will be determined by
- Čerenkov detector with the lead wall
- Light spectra in the PMTs
- Monte Carlo simulation
- Asymmetry measurement at 3.35 GeV
- Constrain γZ structure functions, $F_{1,3}^{\gamma Z}$
- Part of a small unique dataset
- Relevant for Qweak and upcoming experiments
- Additional measurements that we get for 'free'
- Non-resonant inelastic transverse asymmetries
- PV asymmetries in pion photoproduction at 3.35 GeV
- Transverse asymmetries in pion photoproduction at 3.35 GeV

The Qweak Collaboration

95 collaborators

 10 post docs23 grad students 23 institutions

Institutions:
${ }^{1}$ University of Zagreb
${ }^{2}$ College of William and Mary
${ }^{3}$ A. I. Alikhanyan National Science Laboratory
${ }^{4}$ Massachusetts Institute of Technology
${ }^{5}$ Thomas Jefferson National Accelerator Facility
${ }^{6}$ Ohio University
${ }^{7}$ Christopher Newport University
${ }^{8}$ University of Manitoba,
${ }^{9}$ University of Virginia
${ }^{10}$ TRIUMF
${ }^{11}$ Hampton University
${ }^{12}$ Mississippi State University
${ }^{13}$ Virginia Polytechnic Institute \& State Univ
${ }^{14}$ Southern University at New Orleans
${ }^{15}$ Idaho State University
${ }^{16}$ Louisiana Tech University
${ }^{17}$ University of Connecticut
${ }^{18}$ University of Northern British Columbia
${ }^{19}$ University of Winnipeg
${ }^{20}$ George Washington University
${ }^{21}$ University of New Hampshire
${ }^{22}$ Hendrix College, Conway
${ }^{23}$ University of Adelaide
D. Androic, ${ }^{1}$ D.S. Armstrong, ${ }^{2}$ A. Asaturyan, ${ }^{3}$ T. Averett, ${ }^{2}$ J. Balewski, ${ }^{4}$ J. Beaufait, ${ }^{5}$ R.S. Beminiwattha, ${ }^{6}$ J. Benesch, ${ }^{5}$ F. Benmokhtar, ${ }^{7}$ J. Birchall, ${ }^{8}$ R.D. Carlini, ${ }^{5,2}$ G.D. Cates, ${ }^{9}$ J.C. Cornejo, ${ }^{2}$ S. Covrig, ${ }^{5}$ M.M. Dalton, ${ }^{9}$ C.A. Davis, ${ }^{10}$ W. Deconinck, ${ }^{2}$ J. Diefenbach, ${ }^{11}$ J.F. Dowd, ${ }^{2}$ J.A. Dunne, ${ }^{12}$ D. Dutta, ${ }^{12}$ W.S. Duvall, ${ }^{13}$ M. Elaasar, ${ }^{14}$ W.R. Falk, ${ }^{8}$ J.M. Finn, ${ }^{2,}$ T. Forest, ${ }^{15,16}$ D. Gaskell, ${ }^{5}$ M.T.W. Gericke, ${ }^{8}$ J. Grames, ${ }^{5}$ V.M. Gray, ${ }^{2}$ K. Grimm, ${ }^{16,2}$ F. Guo, ${ }^{4}$ J.R. Hoskins, ${ }^{2}$ K. Johnston, ${ }^{16}$ D. Jones, ${ }^{9}$ M. Jones, ${ }^{5}$ R. Jones, ${ }^{17}$
M. Kargiantoulakis, ${ }^{9}$ P.M. King, ${ }^{6}$ E. Korkmaz, ${ }^{18}$ S. Kowalski, ${ }^{4}$ J. Leacock, ${ }^{13}$ J. Leckey, ${ }^{2}$, A.R. Lee, ${ }^{13}$ J.H. Lee,,${ }^{6,2, \text { L. Lee, }{ }^{10}}$ S. MacEwan, ${ }^{8}$ D. Mack, ${ }^{5}$ J.A. Magee, ${ }^{2}$ R. Mahurin, ${ }^{8}$ J. Mammei, ${ }^{13}$, J.W. Martin, ${ }^{19}$ M.J. McHugh, ${ }^{20}$ D. Meekins, ${ }^{5}$ J. Mei, ${ }^{5}$ R. Michaels, ${ }^{5}$
A. Micherdzinska, ${ }^{20}$ A. Mkrtchyan, ${ }^{3}$ H. Mkrtchyan, ${ }^{3}$ N. Morgan,,13 K.E. Myers, ${ }^{20}$ A. Narayan, ${ }^{12}$ L.Z. Ndukum, ${ }^{12}$ V. Nelyubin, ${ }^{9}$ Nuruzzaman, ${ }^{11,}{ }^{12}$ W.T.H van Oers, ${ }^{10,8}$ A.K. Opper, ${ }^{20}$ S.A. Page, ${ }^{8}$ J. Pan, ${ }^{8}$ K.D. Paschke, ${ }^{9}$ S.K. Phillips, ${ }^{21}$ M.L. Pitt, ${ }^{13}$ M. Poelker, ${ }^{5}$
J.F. Rajotte, ${ }^{4}$ W.D. Ramsay, ${ }^{10,8}$ J. Roche, ${ }^{6}$ B. Sawatzky, ${ }^{5}$ T. Seva, ${ }^{1}$ M.H. Shabestari, ${ }^{12}$ R. Silwal, ${ }^{9}$ N. Simicevic, ${ }^{16}$ G.R. Smith, ${ }^{5}$
P. Solvignon, ${ }^{5}$ D.T. Spayde, ${ }^{22}$ A. Subedi, ${ }^{12}$ R. Subedi, ${ }^{20}$ R. Suleiman, ${ }^{5}$ V. Tadevosyan, ${ }^{3}$ W.A. Tobias, ${ }^{9}$ V. Tvaskis, ${ }^{19,8}$ B. Waidyawansa, ${ }^{6}$ P. Wang, ${ }^{8}$ S.P. Wells, ${ }^{16}$ S.A. Wood, ${ }^{5}$ S. Yang, ${ }^{2}$ R.D. Young, ${ }^{23}$ and S. Zhamkochyan ${ }^{3}$

References

[1] A. Sibirtsev, P. G. Blunden, W. Melnitchouk, and A. W. Thomas, Phys. Rev. D82, 013011 (2010), 1002.0740.
[2] B. C. Rislow and C. E. Carlson, Phys.Rev. D83, 113007 (2011), 1011.2397.
[3] M. Gorchtein, C. Horowitz, and M. J. Ramsey-Musolf, Phys.Rev. C84, 015502 (2011), 1102.3910.
[4] N. L. Hall, P. G. Blunden, W. Melnitchouk, A. W. Thomas, and R. D. Young (2013), arXiv:1304.7877v1 [nucl-th].
[5] P. Blunden, W. Melnitchouk, and A. Thomas, Phys.Rev.Lett. 107, 081801 (2011), 1102.5334.
[6] B. C. Rislow and C. E. Carlson, arXiv:1304.8113v1 [hep-ph].

Backup Slides

Extracting $A_{P V}^{e}$

Parity-Violating Pion Asymmetry

$$
A^{M D 7}=P_{T} A_{T}^{M D 7}+P_{L} A_{P V}^{M D 7}
$$

$\Rightarrow A_{P V}^{M D 7}=\frac{1}{P_{L}}\left(A^{M D 7}-P_{T} A_{T}^{M D 7}\right) \approx \mathrm{A}_{\mathrm{PV}}^{\pi}$

Parity-Violating Electron Asymmetry

$$
\begin{aligned}
A_{P V}=\left(1-f_{\pi}\right) A_{P V}^{e}+f_{\pi} A_{P V}^{\pi} \\
\Rightarrow A_{P V}^{e}=\frac{A_{P V}-f_{\pi} A_{P V}^{\pi}}{1-f_{\pi}}
\end{aligned}
$$

Transverse Calibration Measurement

* Octant 7 with lead wall excluded from fit

Non-Resonant inelastic PV measurement

Beam Energy $=3.35 \mathrm{GeV}$
$\mathrm{W}=2.23 \mathrm{GeV}$
$\mathrm{Q}^{2}=0.09 \mathrm{GeV}^{2}$

Predicted
$A_{P V}^{p} \sim(-7.8 \pm 0.6) \mathrm{ppm}$
An asymmetry measurement will constrain $F_{1,3}^{\gamma Z}$

- Asymmetry measurement lies in the non-resonant inelastic region $Q^{2}=0.09 \mathrm{GeV}^{2}$

$$
A_{P V}=g_{A}^{e}\left(\frac{G_{F} Q^{2}}{2 \sqrt{2} \pi \alpha}\right) \frac{x y^{2} F_{1}^{\gamma Z}+\left(1-y-\frac{x^{2} y^{2} M^{2}}{Q^{2}}\right) F_{2}^{\gamma Z}+\frac{g_{V}^{e}}{g_{A}^{e}}\left(y-\frac{1}{2} y^{2}\right) x F_{3}^{\gamma Z}}{x y^{2} F_{1}^{\gamma \gamma}+\left(1-y-\frac{x^{2} y^{2} M^{2}}{Q^{2}}\right) F_{2}^{\gamma \gamma}}
$$

[4] N. L. Hall, P. G. Blunden, W. Melnitchouk, A. W. Thomas, and R. D. Young (2013), arXiv:1304.7877v1 [nucl-th].

Noise Correction w/ TDC Cut

Run 17956 - MD triggered

Uncorrected ADC Pedestal

Corrected ADC Pedestal

Correlation Fit

Corrected ADC Spectrum

Photo-Electron Spectrum Fit

- Fit data with pion and electron simulations
- Removed electronic pedestal
- Applied a 3 parameter fit
- Pion Amplitude
- Electron Amplitude
- Gain Factor [PEs/ADC channel]
- Fit matches well

MD2barsum PE Spectrum Fit

- Simulation under-predicts between electron and pion peaks

Available Data Set

- Asymmetry and Yields
- Main Measurement
- Purely Transverse
- Aluminum and Carbon Targets
- ADC Spectra
- Tracking Data
- One Čerenkov detector with Lead Wall
- $4^{\prime \prime}$ wall
- 2" wall
- Nominal Energy (1.16 GeV)
- Magnet spectrometer current scans
- LH2
- Aluminum
- Reverse Polarity
- Blocked Octant

Radiative Corrections

Simulated Momentum Scans

- Magnet current selects outgoing momentum
- Simulated signal fractions at various magnet currents
- At 9000 A inelastic signal is maximized at $\sim 25 \%$ of total signal

- At 9000 A elastic signal is minimized
- Most data taken at 9000 A magnet current
- Wall attenuates most electrons
- ~95\% signal comes from pions

Proton's Weak Charge

At tree level, the proton's weak charge is:
$Q_{W}^{p}=1-4 \sin ^{2} \theta_{W}=-2\left(2 C_{1 u}+C_{1 d}\right)$

The Qweak experiment goal is to measure Q_{W}^{p} to $\sim 4 \%$

Qweak Apparatus

$E_{\text {Beam }}=1.165 \mathrm{GeV}$
$Q^{2} \approx 0.025 \mathrm{GeV}^{2}$
$\theta \approx 7-11^{\circ}$
Current $=180 \mu \mathrm{~A}$
Polarization $=89 \%$
Target $=35 \mathrm{~cm}$ LH2
Cryopower $=3.0 \mathrm{~kW}$

