Qweak Ancillary Measurement: Parity-Violating Inelastic $\vec{e}p$ Asymmetry at 3.35 GeV

James Dowd

For the Qweak Collaboration Jan 15-16, 2015

Ancillary Measurement

- For ~2 weeks, Qweak received polarized electron beam at higher than nominal beam energy
- Opportunity to make an ancillary measurement
- Kinematics tuned to the inelastic region
 - Conducive to probing $F_{1,3}^{\gamma Z}$
- We quickly developed a detector system

Kinematics

Radiative Corrections

Including 1st order corrections, the proton's weak charge is:

 γZ -Box

Including 1st order corrections, the proton's weak charge is:

γZ -Box

- Gorchtein and Horowitz showed γZ -box contribution
 - Energy dependent
 - Larger than originally expected (~8% of Q_W^p)
 - Uncertainty of correction could affect precision aim of Qweak
- Recent thorough analysis of both axial and vector components

$$F_{1,2,3}^{\gamma Z}$$
 Structure Functions

For forward scattering, the dispersion relation is:

$$\Re e \Box_{\gamma Z}^{V}(E) = \frac{2E}{\pi} \mathcal{P} \int_{0}^{\infty} dE' \frac{1}{E'^{2} - E^{2}} \, \Im m \Box_{\gamma Z}^{V}(E')$$

Using the optical theorem,

$$2\Im \mathfrak{m}\mathcal{M}_{\gamma Z}^{(PV)} = -4\sqrt{2}\pi M G_F \int \frac{d^3k'}{(2\pi)^3 2E_{k'}} \left(\frac{4\pi\alpha}{Q^2}\right) \frac{1}{1+Q^2/M_Z^2} L_{\mu\nu}^{\gamma Z} W_{\gamma Z}^{\mu\nu}$$

where

$$L_{\mu\nu}^{\gamma Z} = \bar{u}(k,\lambda) \left(g_V^e \gamma_\mu - g_A^e \gamma_\mu \gamma_5 \right) k' \gamma_\nu u(k,\lambda) M W_{\gamma Z}^{\mu\nu} = -g^{\mu\nu} F_1^{\gamma Z} + \frac{p^\mu p^\nu}{p \cdot q} F_2^{\gamma Z} - i \epsilon^{\mu\nu\lambda\rho} \frac{p_\lambda p_\rho}{2p \cdot q} F_3^{\gamma Z}$$

Combining everything, the imaginary part of the correction becomes

$$\Im \mathfrak{m} \Box_{\gamma Z}^{V}(E') = \frac{1}{(s-M^2)^2} \int_{W_{\pi}^2}^{s} dW^2 \int_{0}^{Q_{max}^2} dQ^2 \frac{\alpha(Q^2)}{1+Q^2/M_Z^2} \left[F_1^{\gamma Z} + \frac{s(Q_{max}^2 - Q^2)}{Q^2(W^2 - M^2 + Q^2)} F_2^{\gamma Z} \right]$$

With $s = M^2 + 2ME$, $W_{\pi}^2 = (M + m_{\pi})^2$, and $Q_{max}^2 = 2ME(1 - W^2/s)$

$F_{1,2,3}^{\gamma Z}$ Structure Functions

Integral divided into several regions:

- Region I Described by the Christy-Bosted $F_{1,2}^{\gamma\gamma}$ fit, transformed to the γZ case
- Region II GHRM Model II, transformed to γZ
- Region III Global PDF fits to highenergy data

$$\Im \mathfrak{m} \Box_{\gamma Z}^{V}(E') = \frac{1}{(s - M^2)^2} \int_{W_{\pi}^2}^{s} dW^2 \int_{0}^{Q_{max}^2} dQ^2 \frac{\alpha(Q^2)}{1 + Q^2/M_Z^2} \left[F_1^{\gamma Z} + \frac{s(Q_{max}^2 - Q^2)}{Q^2(W^2 - M^2 + Q^2)} F_2^{\gamma Z} \right]$$

Non-Resonant inelastic PV measurement

- Asymmetry measurement lies in the non-resonant inelastic region
- In a kinematic region with almost no experimental data

[4] N. L. Hall, P. G. Blunden, W. Melnitchouk, A. W. Thomas, and R. D. Young (2013), arXiv:1304.7877v1 [nucl-th].

Data Analysis

- Large W leads to large pion background
 - Pion and electron signals are integrated together
 - Pion dilution is the largest systematic uncertainty
- Elastic *ep* radiative tail
 - Well understood
- Partially transversely polarized beam
 - ~37% transverse
 - Pions have a large transverse asymmetry

Signal Extraction

- At 3.35 GeV, signals in the Čerenkov detectors will be a combination of $\pi^- \& e^-$
- Majority of data was taken with 4" lead in front of lowest Čerenkov Detector
- The lead wall ranges out most of the electrons.
 - ~18 radiation lengths

Signal Extraction

- At 3.35 GeV, signals in the Čerenkov detectors will be a combination of $\pi^- \& e^-$
- Majority of data was taken with 4" lead in front of lowest Čerenkov Detector
- The lead wall ranges out most of the electrons.
 - ~18 radiation lengths

Detector 7 sees mostly pions

Hall C Users Meeting 2015 Jan 15–16, 2015

Lead Wall Simulation

- GEANT4 Simulation
- Electron signal is highly suppressed with increasing wall thickness
- Lead wall isolates pions
- Blocked Čerenkov detector becomes a pion detector

Integrated PE Yield

ADC Light Spectra

- Some event mode data taken
 - Each event is tracked and counted separately
- Pion rate greater than electron rate by factor of ~2
- Pions produce less light than electrons by a factor of ~6
 - Electron signal enhanced by lead pre-radiators
- Fitting spectra will help us determine the pion fraction

Light Spectrum of an Unblocked Octant

Photo-Electron Spectrum Fit

- Fit data with GEANT4 pion and electron simulations
- Removed electronic pedestal
- Applied a 3 parameter fit
 - Pion Amplitude
 - Electron Amplitude
 - Gain Factor [PEs/ADC channel]
- Simulation under-predicts between electron and pion peaks

Beam Polarization at 3.35 GeV

- Data shown
 - Uncorrected
 - Blinded

- Main measurement beam polarization
 - $\sim 0.93 * P_{Beam}$ Longitudinal
 - $\sim 0.37 * P_{Beam}$ Transverse
- Azimuthally symmetric detectors
- Pure transverse measurement beam polarization
 - $\sim 1.0 * P_{Beam}$ Transverse
- Note the large transverse pion asymmetry with opposite sign

Main Measurement

Transverse Calibration Measurement

* Octant 7 with lead wall excluded from fit

Extracting A_{PV}^e

Parity-Violating Pion Asymmetry

$$A_{mix}^{MD7} = P_T A_T^{MD7} + P_L A_{PV}^{MD7}$$

$$\Rightarrow A_{PV}^{MD7} = \frac{1}{P_L} \left(A_{mix}^{MD7} - P_T A_T^{MD7} \right) \approx A_{PV}^{\pi}$$

Parity-Violating Electron Asymmetry

$$\boldsymbol{A}_{PV} = (1 - \boldsymbol{f}_{\pi})\boldsymbol{A}_{PV}^{e} + \boldsymbol{f}_{\pi}\boldsymbol{A}_{PV}^{\pi}$$

$$\Rightarrow A_{PV}^{e} = \frac{A_{PV} - f_{\pi} A_{PV}^{\pi}}{1 - f_{\pi}}$$

Asymmetry result is highly dependent on f_{π}

Transverse Calibration Measurement

* Octant 7 with lead wall excluded from fit

Summary

- Pion fraction will be determined by
 - Čerenkov detector with the lead wall
 - Light spectra in the PMTs
 - Monte Carlo simulation
- Asymmetry measurement at 3.35 GeV
 - Constrain γZ structure functions, $F_{1,3}^{\gamma Z}$
 - Part of a small unique dataset
 - Relevant for Qweak and upcoming experiments
- Additional measurements that we get for 'free'
 - Non-resonant inelastic transverse asymmetries
 - PV asymmetries in pion photoproduction at 3.35 GeV
 - Transverse asymmetries in pion photoproduction at 3.35 GeV

The Qweak Collaboration

95 collaborators23 grad students10 post docs23 institutions

Institutions:

- ¹ University of Zagreb
- ² College of William and Mary
- ³ A. I. Alikhanyan National Science Laboratory
- ⁴ Massachusetts Institute of Technology
- ⁵ Thomas Jefferson National Accelerator Facility
- ⁶ Ohio University
- ⁷ Christopher Newport University
- ⁸ University of Manitoba,
- ⁹ University of Virginia
- ¹⁰ TRIUMF
- ¹¹ Hampton University
- 12 Mississippi State University
- 13 Virginia Polytechnic Institute & State Univ
- ¹⁴ Southern University at New Orleans
- 15 Idaho State University
- ¹⁶ Louisiana Tech University
- 17 University of Connecticut
- ¹⁸ University of Northern British Columbia
- ¹⁹ University of Winnipeg
- ²⁰ George Washington University
- ²¹ University of New Hampshire
- 22 Hendrix College, Conway
- 23 University of Adelaide

D. Androic,¹ D.S. Armstrong,² A. Asaturyan,³ T. Averett,² J. Balewski,⁴ J. Beaufait,⁵ R.S. Beminiwattha,⁶ J. Benesch,⁵
F. Benmokhtar,⁷ J. Birchall,⁸ R.D. Carlini,^{5, 2} G.D. Cates,⁹ J.C. Cornejo,² S. Covrig,⁵ M.M. Dalton,⁹ C.A. Davis,¹⁰ W. Deconinck,²
J. Diefenbach,¹¹ J.F. Dowd,² J.A. Dunne,¹² D. Dutta,¹² W.S. Duvall,¹³ M. Elaasar,¹⁴ W.R. Falk,⁸ J.M. Finn,². T. Forest,^{15, 16} D. Gaskell,⁵
M.T.W. Gericke,⁸ J. Grames,⁵ V.M. Gray,² K. Grimm,^{16, 2} F. Guo,⁴ J.R. Hoskins,² K. Johnston,¹⁶ D. Jones,⁹ M. Jones,⁵ R. Jones,¹⁷
M. Kargiantoulakis,⁹ P.M. King,⁶ E. Korkmaz,¹⁸ S. Kowalski,⁴ J. Leacock,¹³ J. Leckey,². A.R. Lee,¹³ J.H. Lee,^{6, 2,} L. Lee,¹⁰
S. MacEwan,⁸ D. Mack,⁵ J.A. Magee,² R. Mahurin,⁸ J. Mammei,^{13,} J.W. Martin,¹⁹ M.J. McHugh,²⁰ D. Meekins,⁵ J. Mei,⁵ R. Michaels,⁵
A. Micherdzinska,²⁰ A. Mkrtchyan,³ H. Mkrtchyan,³ N. Morgan,¹³ K.E. Myers,²⁰ A. Narayan,¹² L.Z. Ndukum,¹² V. Nelyubin,⁹
Nuruzzaman,^{11, 12} W.T.H van Oers,^{10, 8} A.K. Opper,²⁰ S.A. Page,⁸ J. Pan,⁸ K.D. Paschke,⁹ S.K. Phillips,²¹ M.L. Pitt,¹³ M. Poelker,⁵
J.F. Rajotte,⁴ W.D. Ramsay,^{10, 8} J. Roche,⁶ B. Sawatzky,⁵ T. Seva,¹ M.H. Shabestari,¹² R. Silwal,⁹ N. Simicevic,¹⁶ G.R. Smith,⁵
P. Solvignon,⁵ D.T. Spayde,²² A. Subedi,¹² R. Subedi,²⁰ R. Suleiman,⁵ V. Tadevosyan,³ W.A. Tobias,⁹ V. Tvaskis,^{19, 8}
B. Waidyawansa,⁶ P. Wang,⁸ S.P. Wells,¹⁶ S.A. Wood,⁵ S. Yang,² R.D. Young,²³ and S. Zhamkochyan ³

References

[1] A. Sibirtsev, P. G. Blunden, W. Melnitchouk, and A. W. Thomas, Phys. Rev. **D82**, 013011 (2010), 1002.0740.

[2] B. C. Rislow and C. E. Carlson, Phys.Rev. **D83**, 113007 (2011), 1011.2397.

[3] M. Gorchtein, C. Horowitz, and M. J. Ramsey-Musolf, Phys.Rev. **C84**, 015502 (2011), 1102.3910.

[4] N. L. Hall, P. G. Blunden, W. Melnitchouk, A. W. Thomas, and R. D. Young (2013), arXiv:1304.7877v1 [nucl-th].

[5] P. Blunden, W. Melnitchouk, and A. Thomas, Phys.Rev.Lett. **107**, 081801 (2011), 1102.5334.

[6] B. C. Rislow and C. E. Carlson, arXiv:1304.8113v1 [hep-ph].

Backup Slides

Extracting A_{PV}^e

Main Measurement

Parity-Violating Electron Asymmetry

$$A_{PV} = (1 - f_{\pi})A_{PV}^{e} + f_{\pi}A_{PV}^{\pi}$$

$$\Rightarrow A_{PV}^{e} = \frac{A_{PV} - f_{\pi} A_{PV}^{\pi}}{1 - f_{\pi}} \qquad \boxed{\begin{array}{c} & & \\ & & \\ 1 & & \\ & &$$

Transverse Calibration Measurement

* Octant 7 with lead wall excluded from fit

Hall C Users Meeting 2015 Jan 15–16, 2015

James Dowd

5

Non-Resonant inelastic PV measurement

[4] N. L. Hall, P. G. Blunden, W. Melnitchouk, A. W. Thomas, and R. D. Young (2013), arXiv:1304.7877v1 [nucl-th].

Noise Correction w/ TDC Cut

Run 17956 – MD triggered

Photo-Electron Spectrum Fit

- Fit data with pion and electron simulations
- Removed electronic pedestal
- Applied a 3 parameter fit
 - Pion Amplitude
 - Electron Amplitude
 - Gain Factor [PEs/ADC channel]
- Fit matches well
- Simulation under-predicts between electron and pion peaks

MD2barsum PE Spectrum Fit

Available Data Set

• Asymmetry and Yields

- Main Measurement
- Purely Transverse
- Aluminum and Carbon Targets

ADC Spectra

- Tracking Data
- One Čerenkov detector with Lead Wall
 - 4" wall
 - 2" wall
 - Nominal Energy (1.16 GeV)
- Magnet spectrometer current scans
 - LH2
 - Aluminum
 - Reverse Polarity
- Blocked Octant

Radiative Corrections

Simulated Momentum Scans

- Magnet current selects outgoing momentum
- Simulated signal fractions at various magnet currents
 - At 9000 A inelastic signal is maximized at ~25% of total signal
 - At 9000 A elastic signal is minimized
- Most data taken at 9000 A magnet current
- Wall attenuates most electrons
 - ~95% signal comes from pions

Proton's Weak Charge

At tree level, the proton's weak charge is:

$$Q_W^p = 1 - 4\sin^2\theta_W = -2(2C_{1u} + C_{1d})$$

The Qweak experiment goal is to measure Q_W^p to ~4%

Qweak Apparatus

