Spin Asymmetries on the Nucleon Experiment HMS results

Hoyoung Kang (Seoul National University) For SANE Collaboration

Hall C Users Meeting January 16, 2015

Outline

- Introduction to SANE-HMS
- Experimental Setup and SANE-HMS
- Dilution Factor
- Radiative Corrections
- HMS Asymmetries
- Spin Structure Functions
- d₂, Twist-3 Matrix Element
- Summary

Purpose of SANE-HMS

SANE-HMS resonance data explores high Bjorken x region at intermediate Q²:

- Resonances and Q² dependence of A₁ and A₂
- SSF $g_2(x, Q^2)$
- Higher twist effects
- Twist-3 d₂ matrix element

Experimental Setup

HMS Coverage for SANE

Dilution Factor from Packing Fraction

The target and beam are not completely polarized. It contains also un-polarizable materials.

Dilution factor f is the ratio of free polarizable nucleons to the total amount of nucleons in the sample.

A = A_{180} or A_{80} is the measured asymmetry without radiative corrections.

Dilution Factor from Packing Fraction

Packing fraction is the relative volume ratio of ammonia to the target cell, or the fraction of the cell's length that would be filled with ammonia by cylindrical symmetry.

$$f = \frac{3H}{(3H+N)pf + He(1-pf) + Others}$$

Dilution Factor from Packing Fraction Total yield has linear relation with packing fraction: $Y_T = m pf + b$

Using MC (P. E. Bosted and M. E. Christy, PRC81 (2010) 055213) assuming two different *pf*, the slope(m) and intercept(b) can be calculated and then the yield of real data produces *pf* of real target.

SANE packing fractions are 56% - 62% with ~4.5% error.

Packing Fraction

Data and MC comparison (Red is MC)

Packing fraction

Dilution Factor

Dilution factor is calculated using MC, comparing cross sections of each materials in target cell. And packing fraction is the only necessary input for each target cell.

Dilution Factor

Dilution factor is calculated using MC, comparing cross sections of each materials in target cell. And packing fraction is the only necessary input for each target cell.

Dilution factor for DIS with PF of 58.8%

Radiative Corrections

Following S. Stein et al., PRD12 (1975) 1884, corrections were mainly done by POLRAD 2.0 Initial fit parameters came from RSS, basically Breit-Wigner resonance and polynomial (with some correction) deep inelastic tail. Newly corrected data was refitted to iterate.

External E_s E_s' $E_p' t_a$ $E_s' Q Q$ T_b Q X

HMS Asymmetries

HMS Asymmetries

HMS Asymmetries

Setting	Beam energy (GeV)	HMS central momentum (GeV)	HMS angle from beamline (degree)	$< Q^2 > \ (GeV^2)$	< W > (GeV)
(1)	4.7 (par) / 5.9 (per)	3.2 (par) / 4.4 (per)	20.2 (par) / 15.4 (per)	1.863	1.353
(2)	5.9	3.1	15.4	1.313	2.196
(3)	4.7	2.2	16	0.806	2.196

SANE-HMS Region 1

 $Q^2 = 1.86 \ GeV^2$ Resonance region

Parallel and Perpendicular Asymmetries

 $Q^2 = 1.86 \ GeV^2$

Asymmetries A₁ and A₂

 A_1 and A_2 are virtual photoabsorption asymmetries.

$$A_{1} = \frac{\sigma_{1/2}^{T} - \sigma_{3/2}^{T}}{\sigma_{1/2}^{T} + \sigma_{3/2}^{T}} = \frac{\sigma_{TT}}{\sigma_{T}} = \frac{g_{1} - \gamma^{2}g_{2}}{F_{1}}$$
$$A_{2} = \frac{2\sigma_{LT}}{\sigma_{1/2}^{T} + \sigma_{3/2}^{T}} = \frac{\sigma_{LT}}{\sigma_{T}} = \frac{\gamma(g_{1} + g_{2})}{F_{1}}$$

 $\sigma_{1/2}^T$ and $\sigma_{3/2}^T$ are the virtual photon absorption transverse cross sections when total helicity of photon and nucleon is 1/2 and 3/2 respectively. σ_{LT} is the interference term between the transverse and longitudinal photon-nucleon amplitude.

Radiative correction done by iterating the fits of A_1 and A_2 until they converged.

Fitting Function

where

$$BW_{i} = \frac{a_{i} \ \kappa_{i}^{2} \ w_{i}^{2} \ \Gamma_{i} \ \Gamma_{i}^{\gamma}}{\kappa_{cm}^{2} \ [(w_{i}^{2} - W^{2})^{2} + w_{i}^{2} \ \Gamma_{i}^{2}]}$$

$$= g_{i} \left(\frac{q_{cm}}{q_{i}}\right)^{(2l_{i}+1)} \left(\frac{q_{i}^{2} + X_{i}^{2}}{q_{cm}^{2} + X_{i}^{2}}\right)^{l_{i}}$$
$$= g_{i} \left(\frac{\kappa_{cm}}{\kappa_{i}}\right)^{(2j_{i})} \left(\frac{\kappa_{i}^{2} + X_{i}^{2}}{\kappa_{cm}^{2} + X_{i}^{2}}\right)^{j_{i}}$$

$$\begin{split} \kappa_i &= \sqrt{\frac{(w_i^2 + M^2 + Q^2)^2}{4w_i^2} - M^2} \\ q_i &= \sqrt{\frac{(w_i^2 + M^2 - m_\pi^2)^2}{4w_i^2} - M^2} \\ \kappa_{cm} &= \sqrt{\frac{(W^2 + M^2 - m_\pi^2)^2}{4W^2} - M^2} \\ q_{cm} &= \sqrt{\frac{(W^2 + M^2 - m_\pi^2)^2}{4W^2} - M^2} \end{split}$$

Table 3.2: The fitting parameters of A_1 and A_2 . a_i is the amplitude, ω_i is the centroid, and g_i is the width of the i-th BW peak.

Parameter	A_1 Fit	A_2 Fit
a_1	-0.553 ± 0.204	-0.306 ± 0.152
a_2	0.724 ± 0.267	-0.474 ± 0.210
a_3	0.615 ± 0.071	_
ω_1	1.186 ± 0.016	1.232 (fixed)
ω_2	1.381 ± 0.006	1.323 ± 0.010
ω_3	1.547 ± 0.012	_
g_1	0.031 ± 0.025	0.070 ± 0.057
g_2	0.053 ± 0.036	0.058 ± 0.035
g_3	0.197 ± 0.068	_

Х

Х

Х

Preliminary Twist-3 d₂ for the Region 3

$$d_2 = 3\int_0^1 x^2(g_2 - g_2^{WW})dx = \int_0^1 x^2(2g_1 + 3g_2)dx$$

0.02 $d2i = x^{2}(2g_{1}+3g_{2})^{0.01}$ d2i **OPE** valid to -0.03 $N = 2 < Q^2 / M_0^2 \sim 1.8 / 0.5^2$ -0.04 per DIS – resonances duality -0.05 -0.06 Ji & Unrau, PRD52 (1995) 72 -0.07 -0.08 0.5 0.55 0.6 0.65 0.7 0.75 0.85 0.8

d₂ Matrix Element

d₂ Matrix Element

$$\overline{d_2} = -0.0087 \pm 0.0014$$
$$\overline{d_2} = \int_{0.47}^{0.87} x^2 (2g_1 + 3g_2) dx$$

d₂ Matrix Element

SANE-HMS Region 2

$Q^2 = 1.31 \, GeV^2$ Extension of RSS data into DIS

Parallel and Perpendicular Asymmetries

 $Q^2 = 1.31 \; GeV^2$

SANE-HMS Region 3

 $Q^2 = 0.81 \, GeV^2$ DIS region

Parallel and Perpendicular Asymmetries

 $Q^2 = 0.81 \; GeV^2$

 $6 - RSS < Q^{2} > = 1.3 \text{ GeV}^{2}$ $0.1 \quad 0.2 \quad 0.3 \quad 0.4 \quad 0.5 \quad 0.6 \quad 0.7$

Х

0.8

SANE collaboration

U. Basel, Florida International U., Hampton U., Norfolk S. U., North Carolina A&T S. U., IHEP-Protvino, U. of Regina, Rensselaer Polytechnic I., Rutgers U., Seoul National U., Temple U., TJNAF, U. of Virginia, College of William & Mary, Yerevan Physics I.

Spokespersons: S. Choi (Seoul), M. Jones(Jlab), Z-E. Meziani (Temple), O. A. Rondon (U. of Virginia)

Summary

- SANE-HMS is a measurement of spin structure functions in high Bjorken x and intermediate Q².
- Parallel and perpendicular asymmetries and structure functions show good agreement with previous experiments.
- A₂ and g₂ show significant Q² evolution. Negative A₂ at W=1.3 GeV is shown. And negative A₂ at DIS region can affect g₁ deduced from parallel asymmetry only (e.g. Hall B results).
- > $\overline{d_2} = -0.0087 \pm 0.0014$ is the first negative result of d_2 matrix element, although its integration range is limited.

Backup Slides

Systematic Errors

Error Source	Average
Target Polarization	4.0%
Beam polarization	1.5%
Dilution Factor	3.3%
Nitrogen Correction	0.4%
Radiative Corrections	10% (A_1 and A_2)
Kinematic Reconstruction	0.5%

Twist-3 d₂

Useful relations

$$g_1 = \frac{F_1}{1 + \gamma^2} (A_1 + \gamma A_2),$$

$$g_2 = \frac{F_1}{1 + \gamma^2} (-A_1 + \frac{A_2}{\gamma})$$

$$A_{1} = \frac{g_{1} - \gamma^{2} g_{2}}{F_{1}}$$
$$A_{2} = \gamma \frac{g_{1} + g_{2}}{F_{1}},$$

$$A_{\parallel} = D(A_1 + \eta A_2),$$
$$A_{\perp} = d(A_2 - \zeta A_1),$$

Spin Structure Functions

Inclusive DIS cross section depends on four structure functions, two unpolarized (F_1 , F_2) and two polarized (g_1 , g_2). The spin structure functions g_1 and g_2 can be experimentally determined by measuring spin asymmetries:

$$A_{\parallel} = \frac{\sigma^{\downarrow\uparrow} - \sigma^{\uparrow\uparrow}}{\sigma^{\downarrow\uparrow} + \sigma^{\uparrow\uparrow}}, \quad A_{\perp} = \frac{\sigma^{\downarrow\rightarrow} - \sigma^{\uparrow\rightarrow}}{\sigma^{\downarrow\rightarrow} + \sigma^{\uparrow\rightarrow}}.$$
$$g_{1}(x, Q^{2}) = \frac{F_{1}(x, Q^{2})}{d'} \left[A_{\parallel} + \tan(\theta/2)A_{\perp}\right],$$
$$g_{2}(x, Q^{2}) = \frac{yF_{1}(x, Q^{2})}{2d'} \left[\frac{E + E' \cos(\theta)}{E' \sin(\theta)}A_{\perp} - A_{\parallel}\right]$$

ep deep inelastic scattering

High-energy electron-nucleon scattering(Deep Inelastic Scattering) ep \rightarrow e'X

k and k' are the four-momenta of the incoming and outgoing electrons, P is the four-moemntum of a proton with mass M, and W is the mass of the recoiling system X.

q is the four-momentum of the virtual photon(the exchanged particle). ($Q^2 = -q^2$)

Spin structure functions

When the spins of electron and nucleon are all polarized, we can see the dependence of scattering cross section on the spin structure functions $g_1(x, Q^2)$ and $g_2(x, Q^2)$.

$$g_{1} = \frac{1}{2} \sum_{i} e_{i}^{2} [q_{i}^{+} - q_{i}^{-}]$$

$$g_{2} = g_{2}^{WW} + \overline{g_{2}}$$

$$g_{2}^{WW}(x, Q^{2}) = -g_{1}(x, Q^{2}) + \int_{x}^{1} \frac{g_{1}(x', Q^{2})}{x'} dx'$$

High Momentum Spectrometer

World Data and SANE Region

World data lacks big region, especially in the perpendicular asymmetry. SANE covers broad region of

Packing Fraction

Comparing data with Monte Carlo results assuming 50% and 60% packing fraction of target, 60.9% packing fraction is determined for the target material #9 6-28-07 14NH3.

Unpolarized Strucuture Functions

ep deep inelastic scattering

Invariant quantities:

 $\nu = \frac{q \cdot P}{M} = E - E'$ is the lepton's energy loss in the nucleon rest frame (in earlier literature sometimes $\nu = q \cdot P$). Here, E and E' are the initial and final lepton energies in the nucleon rest frame.

$$\begin{aligned} Q^2 &= -q^2 = 2(EE' - \overrightarrow{k} \cdot \overrightarrow{k'}) - m_{\ell}^2 - m_{\ell'}^2 \text{ where } m_{\ell}(m_{\ell'}) \text{ is the initial (final) lepton mass.} \\ &\text{If } EE' \sin^2(\theta/2) \gg m_{\ell}^2, \, m_{\ell'}^2, \, \text{then} \end{aligned}$$

 $\approx 4EE' \sin^2(\theta/2)$, where θ is the lepton's scattering angle with respect to the lepton beam direction.

 $x = \frac{Q^2}{2M\nu}$ where, in the parton model, x is the fraction of the nucleon's momentum carried by the struck quark.

 $y = \frac{q \cdot P}{k \cdot P} = \frac{\nu}{E}$ is the fraction of the lepton's energy lost in the nucleon rest frame. $W^2 = (P+q)^2 = M^2 + 2M\nu - Q^2$ is the mass squared of the system X recoiling against the scattered lepton.

C. Amsler et al., Physics Letters B667, 1 (2008)

Radiative Correction

$$A = \frac{1}{f C_N P_b P_t f_{RC}} \frac{d\sigma^{\downarrow\uparrow} - d\sigma^{\uparrow\uparrow}}{d\sigma^{\downarrow\uparrow} + d\sigma^{\uparrow\uparrow}} + A_{RC}$$

Radiative Correction

- Incoming and outgoing electron lose energy before and after scattering.
- 2. Elastic tail should be subtracted.
- QED processes other than Born contributes to data.

CLAS eg1b data

