Spin Asymmetries on the Nucleon Experiment HMS results

Hoyoung Kang
(Seoul National University) For SANE Collaboration

Hall C Users Meeting January 16, 2015

Outline

- Introduction to SANE-HMS
- Experimental Setup and SANE-HMS
- Dilution Factor
- Radiative Corrections
- HMS Asymmetries
- Spin Structure Functions
- d_{2}, Twist-3 Matrix Element
- Summary

Purpose of SANE-HMS

SANE-HMS resonance data explores high Bjorken x region at intermediate Q^{2} :

- Resonances and Q^{2} dependence of A_{1} and A_{2}
- SSF $g_{2}\left(x, Q^{2}\right)$
- Higher twist effects
- Twist-3 d_{2} matrix element

Experimental Setup

Polarized Electron Beam: 4.7, 5.9 GeV
Polarized Proton Target: ~ \perp, ||

Electron Arm

Ammonia ($\mathbf{N H}_{3}$) Polarized via DNP in 5T Magnetic Field

HMS Coverage for SANE

from Packing Fraction

The target and beam are not completely polarized. It contains also un-polarizable materials.

$$
A=\frac{1}{P_{b} P_{t} f} \frac{d \sigma^{\downarrow \uparrow}-d \sigma^{\uparrow \uparrow}}{d \sigma^{\downarrow \uparrow}+d \sigma^{\uparrow \uparrow}}
$$

Dilution factor f is the ratio of free polarizable nucleons to the total amount of nucleons in the sample.
$\mathrm{A}=\mathrm{A}_{180}$ or A_{80} is the measured asymmetry without radiative corrections. ammonia to the target cell, or the fraction of the cell's length that would be filled with ammonia by cylindrical symmetry.

$$
f=\frac{3 H}{(3 H+N) p f+H e(1-p f)+\text { Others }}
$$

from Packing Fraction

Total yield has linear relation with packing fraction:
$Y_{T}=m p f+b$
Using MC (P. E. Bosted and M. E. Christy, PRC81 (2010) 055213) assuming two different $p f$, the slope(m) and intercept(b) can be calculated and then the yield of real data produces pf of real target.

SANE packing fractions are $56 \%-62 \%$ with $\sim 4.5 \%$ error.

Packing Fraction

Data and MC comparison (Red is MC)

Packing fraction

■ Unique PF(\%) * Run average

Dilution Factor

Dilution factor is calculated using MC , comparing cross sections of each materials in target cell. And packing fraction is the only necessary input for each target cell.

Dilution factor for resonance with PF of 61.9\%

Dilution Factor

Dilution factor is calculated using MC , comparing cross sections of each materials in target cell. And packing fraction is the only necessary input for each target cell.

Dilution factor for DIS with PF of 58.8\%

Radiative Corrections

Following S. Stein et al., PRD12 (1975) 1884, corrections were mainly done by POLRAD 2.0
Initial fit parameters came from RSS,
basically Breit-Wigner resonance
and polynomial (with some correction) deep inelastic tail.

Newly corrected data was refitted to iterate.

HMS Asymmetries

HMS Asymmetries

HMS Asymmetries

Setting	Beam energy (GeV)	HMS central momentum (GeV)	HMS angle from beamline (degree)	$\begin{aligned} & <Q^{2}> \\ & \left(G e V^{2}\right) \end{aligned}$	$\begin{aligned} & <W> \\ & (\mathrm{GeV}) \end{aligned}$
(1)	$\begin{gathered} 4.7 \text { (par) / } \\ 5.9 \text { (per) } \end{gathered}$	$\begin{aligned} & 3.2 \text { (par) / } \\ & 4.4 \text { (per) } \end{aligned}$	$\begin{gathered} 20.2 \text { (par) / } \\ 15.4 \text { (per) } \end{gathered}$	1.863	1.353
(2)	5.9	3.1	15.4	1.313	2.196
(3)	4.7	2.2	16	0.806	2.196

SANE-HMS Region 1

$Q^{2}=1.86 \mathrm{GeV}^{2}$
Resonance region

Parallel and Perpendicular Asymmetries

$$
Q^{2}=1.86 \mathrm{GeV}^{2}
$$

Asymmetries \boldsymbol{A}_{1} and \boldsymbol{A}_{2}

A_{1} and A_{2} are virtual photoabsorption asymmetries.

$$
\begin{aligned}
& A_{1}=\frac{\sigma_{1 / 2}^{T}-\sigma_{3 / 2}^{T}}{\sigma_{1 / 2}^{T}+\sigma_{3 / 2}^{T}}=\frac{\sigma_{T T}}{\sigma_{T}}=\frac{g_{1}-\gamma^{2} g_{2}}{F_{1}} \\
& A_{2}=\frac{2 \sigma_{L T}}{\sigma_{1 / 2}^{T}+\sigma_{3 / 2}^{T}}=\frac{\sigma_{L T}}{\sigma_{T}}=\frac{\gamma\left(g_{1}+g_{2}\right)}{F_{1}}
\end{aligned}
$$

$\sigma_{1 / 2}^{T}$ and $\sigma_{3 / 2}^{T}$ are the virtual photon absorption transverse cross sections when total helicity of photon and nucleon is $1 / 2$ and $3 / 2$ respectively. $\sigma_{L T}$ is the interference term between the transverse and longitudinal photon-nucleon amplitude.
Radiative correction done by iterating the fits of A_{1} and A_{2} until they converged.

Asymmetry $A_{1}=\frac{\sigma_{T T}}{\sigma_{T}}$

$$
Q^{2}=1.86 \mathrm{GeV}^{2}
$$

Asymmetry $A_{2}=\frac{\sigma_{L T}}{\sigma_{T}}$

$$
Q^{2}=1.86 \mathrm{GeV}^{2}
$$

Fitting Function

$$
\text { fit }=\underbrace{\sum_{i=1}^{4} B W_{i}}_{\text {Resonances }}+\underbrace{x^{\alpha} \sum_{n=0}^{3} \beta_{n} x^{n}}_{\text {DIS }} \times \underbrace{\times \frac{1}{\sqrt{Q^{2}}}}_{A_{2} \text { only }}
$$

where

$$
B W_{i}=\frac{a_{i} \kappa_{i}^{2} w_{i}^{2} \Gamma_{i} \Gamma_{i}^{\gamma}}{\kappa_{c m}^{2}\left[\left(w_{i}^{2}-W^{2}\right)^{2}+w_{i}^{2} \Gamma_{i}^{2}\right]}
$$

$$
\begin{aligned}
& =g_{i}\left(\frac{q_{m}}{q_{i}}\right)^{\left(q_{i}+1\right)}\left(\frac{q_{i}^{2}+X_{i}^{2}}{g_{m}^{2}+X_{i}^{2}}\right)^{h} \\
& =g_{i}\left(\frac{k_{m}}{k_{i}}\right)^{(2 i j)}\left(\frac{k_{i}^{2}+X_{i}^{2}}{k_{m}^{2}+X_{i}^{2}}\right)^{j i}
\end{aligned}
$$

$$
\begin{aligned}
\kappa_{i} & =\sqrt{\frac{\left(w_{i}^{2}+M^{2}+Q^{2}\right)^{2}}{4 w_{i}^{2}}-M^{2}} \\
q_{i} & =\sqrt{\frac{\left(w_{i}^{2}+M^{2}-m_{\pi}^{2}\right)^{2}}{4 w_{i}^{2}}-M^{2}} \\
\kappa_{c m} & =\sqrt{\frac{\left(W^{2}+M^{2}+Q^{2}\right)^{2}}{4 W^{2}}-M^{2}} \\
q_{c m} & =\sqrt{\frac{\left(W^{2}+M^{2}-m_{\pi}^{2}\right)^{2}}{4 W^{2}}-M^{2}}
\end{aligned}
$$

Table 3.2: The fitting parameters of A_{1} and $A_{2} . a_{i}$ is the amplitude, ω_{i} is the centroid, and g_{i} is the width of the i-th BW peak.

Parameter	A_{1} Fit	A_{2} Fit
a_{1}	-0.553 ± 0.204	-0.306 ± 0.152
a_{2}	0.724 ± 0.267	-0.474 ± 0.210
a_{3}	0.615 ± 0.071	-
ω_{1}	1.186 ± 0.016	1.232 (fixed)
ω_{2}	1.381 ± 0.006	1.323 ± 0.010
ω_{3}	1.547 ± 0.012	-
g_{1}	0.031 ± 0.025	0.070 ± 0.057
g_{2}	0.053 ± 0.036	0.058 ± 0.035
g_{3}	0.197 ± 0.068	-

Spin Structure Function g_{1}

$$
Q^{2}=1.86 \mathrm{GeV}^{2}
$$

Spin Structure Function g_{1}

$$
Q^{2}=1.86 \mathrm{GeV}^{2}
$$

Spin Structure Function g_{1}

$$
Q^{2}=1.86 \mathrm{GeV}^{2}
$$

Spin Structure Function \boldsymbol{g}_{2}

$$
Q^{2}=1.86 \mathrm{GeV}^{2}
$$

Preliminary Twist-3 d_{2} for the Region 3

$$
d_{2}=3 \int_{0}^{1} x^{2}\left(g_{2}-g_{2}^{W W}\right) d x=\int_{0}^{1} x^{2}\left(2 g_{1}+3 g_{2}\right) d x
$$

OPE valid to

$$
N=2<Q^{2} / M_{0}^{2} \sim 1.8 / 0.5^{2}
$$

per DIS - resonances duality Ji \& Unrau, PRD52 (1995) 72

d_{2} Matrix Element

d_{2} Matrix Element

$$
\begin{gathered}
\overline{d_{2}}=-0.0087 \pm 0.0014 \\
\overline{d_{2}}=\int_{0.47}^{0.87} x^{2}\left(2 g_{1}+3 g_{2}\right) d x
\end{gathered}
$$

d_{2} Matrix Element

SANE-HMS Region 2

$$
Q^{2}=1.31 \mathrm{GeV}^{2}
$$

Extension of RSS data into DIS

Parallel and Perpendicular Asymmetries

$$
Q^{2}=1.31 \mathrm{GeV}^{2}
$$

Asymmetry $A_{1}=\frac{\sigma_{T T}}{\sigma_{T}}$

$$
Q^{2}=1.31 \mathrm{GeV}^{2}
$$

Asymmetry $A_{2}=\frac{\sigma_{L T}}{\sigma_{T}}$

$$
Q^{2}=1.31 \mathrm{GeV}^{2}
$$

Spin Structure Function g_{1}

$$
Q^{2}=1.31 \mathrm{GeV}^{2}
$$

Spin Structure Function g_{1}

Spin Structure Function g_{1}

$$
Q^{2}=1.31 \mathrm{GeV}^{2}
$$

Spin Structure Function g_{2}

$$
Q^{2}=1.31 \mathrm{GeV}^{2}
$$

SANE-HMS Region 3

$Q^{2}=0.81 \mathrm{GeV}^{2}$ DIS region

Parallel and Perpendicular Asymmetries
 $$
Q^{2}=0.81 \mathrm{GeV}^{2}
$$

Asymmetry $A_{1}=\frac{\sigma_{T T}}{\sigma_{T}}$

$$
Q^{2}=0.81 \mathrm{GeV}^{2}
$$

Asymmetry $A_{2}=\frac{\sigma_{L T}}{\sigma_{T}}$

$$
Q^{2}=0.81 \mathrm{GeV}^{2}
$$

Spin Structure Function g_{1}

$$
Q^{2}=0.81 \mathrm{GeV}^{2}
$$

Spin Structure Function \boldsymbol{g}_{2}

$$
Q^{2}=0.81 \mathrm{GeV}^{2}
$$

SANE collaboration

U. Basel, Florida International U., Hampton U., Norfolk S. U., North Carolina A\&T S. U., IHEPProtvino, U. of Regina, Rensselaer Polytechnic I., Rutgers U., Seoul National U., Temple U., TJNAF, U. of Virginia, College of William \& Mary, Yerevan Physics I.

Spokespersons: S. Choi (Seoul), M. Jones(Jlab), Z-E. Meziani (Temple), O. A. Rondon (U. of Virginia)

Summary

SANE-HMS is a measurement of spin structure functions in high Bjorken x and intermediate \mathbf{Q}^{2}.

Parallel and perpendicular asymmetries and structure functions show good agreement with previous experiments.
A_{2} and g_{2} show significant Q^{2} evolution. Negative A_{2} at $\mathrm{W}=1.3 \mathrm{GeV}$ is shown. And negative A_{2} at DIS region can affect g_{1} deduced from parallel asymmetry only (e.g. Hall B results).
, $\overline{d_{2}}=-0.0087 \pm 0.0014$ is the first negative result of d_{2} matrix element, although its integration range is limited.

Backup Slides

Systematic Errors

Error Source	Average
Target Polarization	4.0%
Beam polarization	1.5%
Dilution Factor	3.3%
Nitrogen Correction	0.4%
Radiative Corrections	$10 \%\left(A_{1}\right.$ and $\left.A_{2}\right)$
Kinematic Reconstruction	

Twist-3 d 2

Useful relations

$$
\begin{aligned}
g_{1} & =\frac{F_{1}}{1+\gamma^{2}}\left(A_{1}+\gamma A_{2}\right), & A_{1}=\frac{g_{1}-\gamma^{2} g_{2}}{F_{1}} \\
g_{2} & =\frac{F_{1}}{1+\gamma^{2}}\left(-A_{1}+\frac{A_{2}}{\gamma}\right) & A_{2}=\gamma \frac{g_{1}+g_{2}}{F_{1}}, \\
A_{\|} & =D\left(A_{1}+\eta A_{2}\right), &
\end{aligned}
$$

Spin Structure Functions

Inclusive DIS cross section depends on four structure functions, two unpolarized ($\mathrm{F}_{1}, \mathrm{~F}_{2}$) and two polarized $\left(g_{1}, g_{2}\right)$. The spin structure functions g_{1} and g_{2} can be experimentally determined by measuring spin asymmetries:

$$
\begin{aligned}
& A_{\|}=\frac{\sigma^{\downarrow \uparrow}-\sigma^{\uparrow \uparrow}}{\sigma^{\downarrow \uparrow}+\sigma^{\uparrow \uparrow}}, \quad A_{\perp}=\frac{\sigma^{\downarrow \rightarrow}-\sigma^{\uparrow \rightarrow}}{\sigma^{\downarrow \rightarrow}+\sigma^{\uparrow \rightarrow}} \\
& g_{1}\left(x, Q^{2}\right)=\frac{F_{1}\left(x, Q^{2}\right)}{d^{\prime}}\left[A_{\|}+\tan (\theta / 2) A_{\perp}\right] \\
& g_{2}\left(x, Q^{2}\right)=\frac{y F_{1}\left(x, Q^{2}\right)}{2 d^{\prime}}\left[\frac{E+E^{\prime} \cos (\theta)}{E^{\prime} \sin (\theta)} A_{\perp}-A_{\|}\right]
\end{aligned}
$$

ep deep inelastic scattering

High-energy electron-nucleon scattering(Deep Inelastic Scattering) ep \rightarrow e'X
k and k^{\prime} are the four-momenta of the incoming and outgoing electrons, P is the four-moemntum of a proton with mass M, and W is the mass of the recoiling system X .
q is the four-momentum of the virtual photon(the exchanged particle). ($Q^{2}=-q^{2}$)

Spin structure functions

When the spins of electron and nucleon are all polarized, we can see the dependence of scattering cross section on the spin structure functions $g_{1}\left(x, Q^{2}\right)$ and $g_{2}\left(x, Q^{2}\right)$.

$$
\begin{aligned}
g_{1} & =\frac{1}{2} \sum_{i} e_{i}^{2}\left[q_{i}^{+}-q_{i}^{-}\right] \\
g_{2} & =g_{2}^{W W}+\overline{g_{2}}
\end{aligned}
$$

$g_{2}^{W W}\left(x, Q^{2}\right)=-g_{1}\left(x, Q^{2}\right)+\int_{x}^{1} \frac{g_{1}\left(x^{\prime}, Q^{2}\right)}{x^{\prime}} d x^{\prime}$

High Momentum Spectrometer

2/25/2009 9:29:15 AM

Hall A 4K Supply Flow: $35.4 \mathrm{~g} / \mathrm{s}$
Hall B 4K Supply Flow:
Hall C 4K Supply Flow:
H.
gis

High Momentum Spectrometer

$\begin{aligned} & \text { Momentum } \\ & \text { Input }(\mathrm{GeV}) \\ & \hline \end{aligned}$	Rumning	Stop	$\square \square \square$ Protron $\square \square \square \square$ Electron	Ramp All to Zero Amps

\square Input OK
Q1 at Current $Q 2$ at Current $Q 3$ at Current \quad Dipole at Field

World Data and SANE Region

World data lacks big region, especially in the perpendicular asymmetry. SANE covers broad region of

Packing Fraction

Comparing data with Monte Carlo results assuming 50\% and 60\% packing fraction of target, 60.9\% packing fraction is determined for the target material \#9 6-28-07 14NH3.

Unpolarized Strucuture Functions

ep deep inelastic scattering

Invariant quantities:
$\nu=\frac{q \cdot P}{M}=E-E^{\prime}$ is the lepton's energy loss in the nucleon rest frame (in earlier literature sometimes $\nu=q \cdot P)$. Here, E and E^{\prime} are the initial and final lepton energies in the nucleon rest frame.
$Q^{2}=-q^{2}=2\left(E E^{\prime}-\vec{k} \cdot \vec{k}^{\prime}\right)-m_{\ell}^{2}-m_{\ell^{\prime}}^{2}$ where $m_{\ell}\left(m_{\ell^{\prime}}\right)$ is the initial (final) lepton mass. If $E E^{\prime} \sin ^{2}(\theta / 2) \gg m_{\ell}^{2}, m_{\ell^{\prime}}^{2}$, then
$\approx 4 E E^{\prime} \sin ^{2}(\theta / 2)$, where θ is the lepton's scattering angle with respect to the lepton beam direction.
$x=\frac{Q^{2}}{2 M \nu}$ where, in the parton model, x is the fraction of the nucleon's momentum carried by the struck quark.
$y=\frac{q \cdot P}{k \cdot P}=\frac{\nu}{E}$ is the fraction of the lepton's energy lost in the nucleon rest frame.
$W^{2}=(P+q)^{2}=M^{2}+2 M \nu-Q^{2}$ is the mass squared of the system X recoiling against the scattered lepton.

Radiative Correction

$$
A=\frac{1}{f C_{N} P_{b} P_{t} f_{R C}} \frac{d \sigma^{\downarrow \uparrow}-d \sigma^{\uparrow \uparrow}}{d \sigma^{\downarrow \uparrow}+d \sigma^{\uparrow \uparrow}}+A_{R C}
$$

1. Incoming and
outgoing electron lose energy before and after scattering.

CLAS eg1b data

CLAS eg1b data

