u-Channel Omega Meson Production from the Fpi-2 Experiment

Bill (Wenliang) Li

Hall C Workshop. January, 2015.

Outline

- Where the data come from
- Theoretical justification
- Plan for data analysis

Fpi-2 E01-004 Experiment

- Fpi-2 (E01-004) 2003
 - Spokesperson: Garth Huber, Henk
 Blok, Dave Mack
 - Standard HMS and SOS (e) configuration
 - Electric form factor of charged π through exclusive π production
- Primary reaction for Fpi-2
 - p(e, e' π⁺)n
- In addition, we have for free
 - p(e,e' p)ω
- Kinematics coverage
 - W= 2.21 GeV, Q²=1.6 and 2.45 GeV²
 - Two ϵ settings for each Q^2

t-Channel π vs *u*-Channel ω^0 Production

- HMS along the *q*-vector (p_{v^*})
 - $p_{\pi+}$ is parallel to p_{γ^*}
 - p_{ω} is anti-parallel to p_{γ^*}

Shared kinematics:

E_{beam} GeV	ϵ	$P_{ m SOS}$ GeV/c	$ heta_{ m SOS}$ deg	$P_{ m HMS}$ GeV/c	$ heta_q \\ ext{deg}$	$ heta_{ m HMS} \ m deg$				
Ç	$Q^2_{nominal}$	= 1.6 Ge	eV^2 W	nominal ¹	= 2.21 Ge	eV				
3.778	0.328	-0.79	43.09	2.931	-9.53	-10.53 -12.53				
4.702	0.593	-1.65	25.73	2.931	-13.28	-13.28 -10.58 -16.28				
$Q_{nominal}^2 = 2.45 \text{ GeV}^2$ $W_{nominal} = 2.21 \text{ GeV}$										
4.210	0.270	-0.77	51.48	3.336	-9.19	-10.59 -12.19				
5.248	0.554	-1.74	29.43	3.336	-13.61	-13.61 -10.61 -16.61				

u-Channel ω⁰ Production

Christian Weiss: "A proton being knocked out of a proton"									
-	e		e'		-				
q - q -				→ → →	- q - q - q				
p q $-\overline{q} -q$ $-$	•				$\begin{bmatrix} - \overline{q} \\ - q \end{bmatrix}^{a}$	0ر			
E_{beam} GeV	$\epsilon \qquad heta_{ m HMS} - \ ext{deg}$	$\theta_q = x$	P_{ω} GeV ² /c ²	$ heta_{\omega q}$ GeV ² /c ²	-t	-u			
	$\mathbf{Q}^2_{nominal}$:	$= 1.6 \text{GeV}^2$	$W_{nominal}$	= 2.21 Ge	V				
3.778 0.	.328 -1.0 -3.0	0.2855	0.311 0.367	9.17 24.59	4.014	0.087 0.129			
4.702 0.	.593 0.0	0.2855	0.304	0.09	4.014	0.082			
	2.7 -3.0		0.357 0.367	22.93 24.61		0.121			
	$Q^2_{nominal} =$	= 2.45 GeV ²	W _{nominal}	= 2.21 Ge	v	0.1.22			
4.210 0.	.270 -1.4 -3.0	0.3796	0.431 0.491	10.57 20.82	4.742	0.184 0.241			
5.248 0	.554 0.0 3.0 -3.0	0.3796	0.415 0.490 0.491	0.00 20.75 20.79	4.742	0.169 0.240 0.241			

$$\gamma^{*}(q) + p(p_{1}) \rightarrow \omega(p_{\omega}) + p(p_{2})$$

$$s = (p_{1} + q)^{2} = (p_{\omega} + p_{2})^{2}$$

$$t = (p_{2} - p_{1})^{2} = (p_{\omega} - q)^{2}$$

$$u = (p_{\omega} - p_{1})^{2} = (p_{2} - q)^{2}$$

In fixed target experiment

- t: Comparing p before and after interaction
- *u*: Comparing *p* before interaction with *ω* after interaction
- u-channel interaction when u~0
- High t corresponds to low u

$$|u|_{\min} = 0$$

Exclusive ω electro-production data

High t Data from CLAS Hall B (2005)

- Hall B Experiment e1-6
 - Oct 2001 Jan 2002
 - Beam energy: 5.754 GeV
- Kinematic coverage:
 - W: 1.8-2.8 GeV
 - Q2: 1.6-5.1 GeV²
 - -t: < 2.7 GeV²
 - 0.16-0.64 **X**:
- Event selection:

$$ep \rightarrow ep \pi^+ X$$

- Reconstructed *e*-*pX* missing mass consistent with the ω mass
- Data published in 2005:
 - Morand et al., Eur. Phys. J. A 24, 445 (2005).

High -t Data from CLAS Hall B (2005)

Regge Trajectory Model by JM Laget

- The determination of the dependency against the momentum transfer t of the longitudinal and the transverse parts of the various meson electroproduction channels must be actively pursued at JLab energy range"
- It would be great if JML could make a calculation similar for Fpi-2 kinematics

Further motivation: Transition Distribution Amplitude (TDA)

- Interaction of Interest: *u*-channel π production
- Extension of the TDA model to describe the backwards vector meson production
- Publication:
 - Lansberg, et al., Phys. Rev. D 77, (2008)
 - Pasquini, B. et al. Phys.Rev. D80 (2009)
 - Lansberg, J.P. *et al.* arXiv:0709.2567 [hep-ph] CPHT-PC141.0907

Data Analysis Plan

Missing Mass - Fit Sum

- Data analysis is similar to that used for the Fpi-2
- Physics Background Removal

- Phase space of 2π production
- Method: BG simulation or fitting a polynomial?

[•] ρ

Rosenbluth Separation Method

$$2\pi \frac{d\sigma}{dtd \phi} = \varepsilon \frac{d\sigma_L}{dt} + \frac{d\sigma_T}{dt} + \sqrt{2\varepsilon(\varepsilon+1)} \frac{d\sigma_{LT}}{dt} \cos \phi + \varepsilon \frac{d\sigma_T}{dt} \cos 2$$

- Rosenbluth Separation method requires
 - Separate measurements are taken at different
 e (virtual photon polarization)
 - All Lorentz invariant physics quantities such as Q², W, t, u, remain constant
 - Beam energy, scattered e angle and virtual photon angle will change as the result, thus event rates are dramatically different

Extract Response Functions through Iterative Procedure

Project Objective and Future Prospective

Objective

- Obtain the complete L/T separated cross section for the uchannel ω meson production
- To initiate more u-channel production studies
- Prospective (Fpi-12 experiment: E06-12-101)
 - Extended u-channel ω production
 - *u*-channel ϕ (*s* \bar{s}) production is possible! Garth Huber has more to say on this during the Exclusive Meson Workshop

Fpi-2 E01-004 Experiment

- Fpi-2 (E01-004) experiment: 2nd pion form factor experiment 2001
 - Spokesperson: Garth Huber, Henk Blok, Dave Mack
 - Standard HMS and SOS (e) configuration.
- Using exclusive charged *π* production to determine the electric form factor from the L/T separated differential cross section
- $P_{\rm HMS}$ θ_q $\theta_{\rm HMS} - \theta_q$ P_m θ_{mq} $P_{\rm SOS}$ $\theta_{\rm SOS}$ ϵ -t E_{beam} x-u GeV^2/c^2 GeV^2/c^2 GeV GeV/c deg MeV/c deg deg GeV/c deg $Q_{nominal}^2 = 1.6 \, \text{GeV}^2$ $W_{nominal} = 2.21 \text{ GeV}$ Primary reaction for Fpi-2 -0.79 43.09 0.328 -9.534 2931 -1.00.2855 0.311 9.17 4.014 0.087 3.778 $p(e, e' \pi^+)n$ and $n(e, e' \pi^-)p$ -3.00.367 24.59 0.129 Through standard *t*-channel 4.702 -1.65 25.73 0.5933 -13.281 2931 0.0 0.2855 0.304 0.09 4.014 0.082 2.7 0.357 22.93 0.121 -3.00.367 24.61 0.129 $Q_{nominal}^2 = 2.45 \text{ GeV}^2$ $W_{nominal} = 2.21 \text{ GeV}$ In addition, we have (for free) 4.210 -0.77 51.48 0.270 -9.190 3336 -1.40.3796 0.431 10.57 4.742 0.184 $p(e,e'p)\omega$ -3.00.491 20.82 0.241 Through *u*-channel 5.248 -1.74 29.43 0.554 -13.606 3336 0.0 0.3796 0.415 0.00 4.742 0.169 -3.00.491 20.79 0.241 3.0 0.490 20.75 0.240
 - Kinematics coverage
 - Same of Fpi-2 *m*⁺ data
 - Same data set:
 - W= 2.21 GeV, Q²=1.6 and 2.45 GeV²
 - Two ε settings for each Q²

Wenliang Li, Dept. of Physics, Univ. of Regina, Regina, SK S4S0A2, Canada.

π+coverage

 ω coverage _____ uu + dd

ω (782): J^P = 1⁻, I^G = 0⁻, $ω : \frac{uu + u}{\sqrt{2}}$ M_ω =782 MeV.

L/T Separation

Rosenbluth Separation

 Experimental differential cross section depend on the Longitudinal and Transverse part of the virtual photon:

$$2\pi \frac{d^2\sigma}{dt \ d\phi_p} = \frac{d\sigma_T}{dt} + \epsilon \ \frac{d\sigma_L}{dt}$$

 ϵ : virtual photon polarization

$$\epsilon = \left(1 + \frac{2|\mathbf{q}|^2}{Q^2} \tan^2 \frac{\theta_e}{2}\right)^{-1}$$

- Rosenbluth Separation method requires
 - Separate measurements are taken at different
 e (virtual photon polarization)
 - All physics quantities such as Q², momentum and energy of virtual photon remain constant
 - Beam energy, scattered e angle and virtual photon angle will change as the result, thus event rates are dramatically different

Slide on combine HMS setting to get the azimuthal

- Slide on combine HMS settings to get the azimuthally coverage
- MC/experiment ratio
- Exacted separated dsigma/dt

High -t Data from CLAS Hall B (2005)

Integrated over $-2.7 \text{ GeV}^2 < t < t_0$ where t_0 ranges -0.09 to -1.61 GeV, as x ranges between 0.203 to 0.61 Specialty: Highest -*t* (low u) ω meson production data

Excitement:

- Observation: Q² independent cross section at high -t
- Possible interoperation: Virtual photon is more likely to couple to a point-like object as -t increases.

Mandelstam variables (s,t,u-Channels)

Pseudoscalar meson (J^P = 0⁻)

Particle name	Particle symbol ¢	Antiparticle symbol \$	Quark content	Rest mass (MeV/c²) ◆	le ¢	J ^{PC} ¢	S ¢	C ¢	B' \$	Mean lifetime (s) 🗢	Commonly decays to (>5% of decays)
Pion ^[6]	π*	π	ud	139.570 18 ±0.000 35	1-	0-	0	0	0	$(2.6033 \pm 0.0005) \times 10^{-8}$	μ ⁺ + ν _μ
Pion ^[7]	π ⁰	Self	$\frac{u\bar{u}-d\bar{d}}{\sqrt{2}}$	134.9766 ±0.0006	1-	0-+	0	0	0	(8.52±0.18)×10 ⁻¹⁷	γ + γ
Eta meson ^[8]	η	Self	<u>uū+dd−2sš</u> [≉] √6	547.862 ±0.018	0+	0-+	0	0	0	(5.02 ± 0.19) × 10 ^{−19[0]}	$\gamma + \gamma \text{ or}$ $\pi^{0} + \pi^{0} + \pi^{0} \text{ or}$ $\pi^{+} + \pi^{0} + \pi^{-}$
Eta prime meson ^[9]	η'(958)	Self	<u>uū+dđ+sā</u> [] √3	957.78 ±0.06	0+	0-+	0	0	0	(3.32±0.15) × 10 ^{-21^[0]}	$\pi^{+} + \pi^{-} + \eta \text{ or}$ $(\rho^{0} + \gamma) / (\pi^{+} + \pi^{-} + \gamma) \text{ or}$ $\pi^{0} + \pi^{0} + \eta$
Charmed eta meson ^[10]	η _c (1S)	Self	cc	2 983.6 ±0.7	0+	0-+	0	0	0	(2.04 ± 0.05) × 10 ^{-23[0]}	See η_c decay modes \mathbb{A}
Bottom eta meson ^[11]	η _b (1S)	Self	bb	9 398.0 ±3.2	0+	0-+	0	0	0	Unknown	See η _b decay modes 🐊
Kaon ^[12]	ĸ*	ĸ	us	493.677 ±0.016	1∕2	0-	1	0	0	(1.2380 ±0.0021) × 10 ⁻⁸	$\mu^{+} + \nu_{\mu} \text{ or}$ $\pi^{+} + \pi^{0} \text{ or}$ $\pi^{0} + e^{+} + \nu_{e} \text{ or}$ $\pi^{+} + \pi^{+} + \pi^{-}$
Kaon ^[13]	K ⁰	 ⁰	ds	497.614 ±0.024	1⁄2	0-	1	0	0	[0]	[0]

Particle name	Particle symbol ¢	Antiparticle symbol	Quark content	Rest mass (MeV/c ²) ¢	I ^G ¢	J ^{PC} ¢	S ¢	C ¢	B' ¢	Mean lifetime (s) 🗢	Commonly decays to (>5% of decays)
Charged rho meson ^[23]	ρ ⁺ (770)	ρ (770)	ud	775.11 ±0.34	1+	1-	0	0	0	$(4.41 \pm 0.02) \times 10^{-24$	π [±] + π ⁰
Neutral rho meson ^[23]	ρ ⁰ (770)	Self	$\frac{u\bar{u}-d\bar{d}}{\sqrt{2}}$	775.26 ±0.25	1+	1	0	0	0	(4.45 ±0.03) × 10 ^{-24[™]9}	π ⁺ + π ⁻
Omega meson ^[24]	ω(782)	Self	$\frac{u\bar{u}+d\bar{d}}{\sqrt{2}}$	782.65 ±0.12	0-	1	0	0	0	(7.75 ±0.07) × 10 ^{−23^Ŋ}	$\pi^+ + \pi^0 + \pi^- \text{ or}$ $\pi^0 + \gamma$
Phi meson ^[25]	ф(1020)	Self	ss	1 019.461 ±0.019	0-	1	0	0	0	(1.54 ±0.01) × 10 ^{−22[∭]}	$K^{+} + K^{-} \text{ or}$ $K^{0}_{S} + K^{0}_{L} \text{ or}$ $(\rho + \pi) / (\pi^{+} + \pi^{0} + \pi^{-})$
J/Psi ^[26]	J/ψ	Self	cc	3 096.916 ±0.011	0-	1	0	0	0	(7.09 ±0.21) × 10 ^{-21[∅]}	See J/ψ(1S) decay modes 🔑

u-Channel ω⁰ Production (May 2014 - Present)

- Discovered during E01-004 experiment
- Missing mass peak is consistent with the mass of the omega meson (783 MeV).
- Not studied by any other experiment or theory

Equations

$$s + u + t = m_{1}^{2} + m_{2}^{2} + m_{3}^{2} + m_{4}^{2} \qquad x_{B} = \frac{Q^{2}}{2pq}$$

$$s + u + t = Q^{2} + 2m_{p}^{2} + m_{\omega}^{2} \qquad Q^{2} = -q^{2}$$

$$s = W^{2} = (p + q)^{2}$$

$$2pq = W^{2} - p^{2} - q^{2}$$

$$= W^{2} + Q^{2} - p^{2}$$

$$x = \frac{Q^{2}}{W^{2} + Q^{2} - p^{2}}$$

$$= \frac{Q^{2}}{W^{2} + Q^{2} - m_{p}^{2}}$$
(Fixed target)

Regge Trajectory Based Model by JML

Hall B public page

Figure 2: When the impact parameter is large (top), the cross section for ω meson production falls quickly as a function of Q². But when the experiment selects the kinematics corresponding to small impact parameter (bottom), the cross section becomes constant with Q² indicating that the interaction takes place between guarks.

reactions.

Hall B public page: https://www.jlab.org/Hall-B/public/hight_vmweb.html#fig2

Wenliang Li, Dept. of Physics, Univ. of Regina,