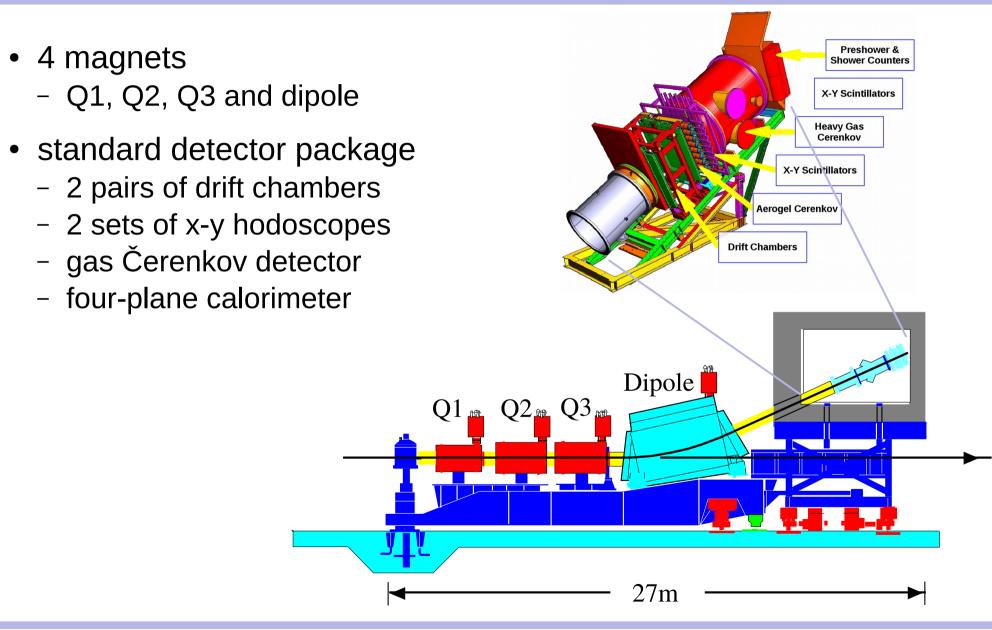
Detector Checkout and Optics Commissioning

> Jure Bericic Brad Sawatzky

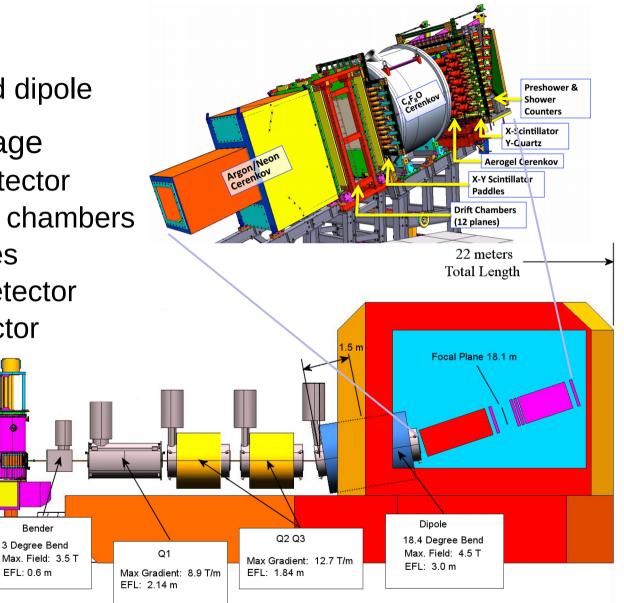
with SHMS optics working group

Hall C Winter Collaboration Meeting January 20, 2017


overview

- HMS overview
- SHMS overview
- commissioning plan > 6 GeV
 - part 1a
 - part 1b
 - part 1c
 - part 1d
- commissioning plan 2.1 GeV
 - part 2
- commissioning plan > 6 GeV
 - part 3a
 - part 3b
- additional information

HMS overview

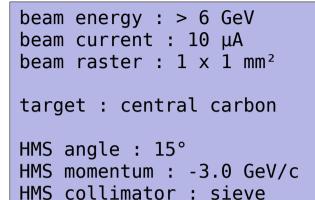


SHMS overview

- 5 magnets
 - bender, Q1, Q2, Q3 and dipole
- standard detector package
 - noble-gas Čerenkov detector
 - 2 pairs of triplets of drift chambers
 - 2 sets of x-y hodoscopes
 - heavy-gas Čerenkov detector
 - aerogel Čerenkov detector
 - pre-shower calorimeter -
 - shower calorimeter

commissioning plan – part 1a

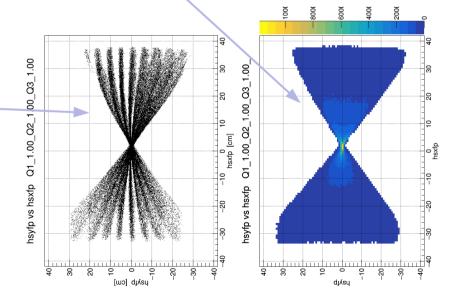
- electronics and detector functionality check
 - check that all signals are well timed
 - determine correct thresholds
 - verify that all detector channels are counting
 - determine scintillator plane efficiency for e-
 - verify that all scalers are incrementing and rates are OK
- beam checkout
 - superharp scan to check beam size (< 200 μ m)
- last beamline girder commissioning
 - monitor the values of three BPMs
 - check data stream for BPM information
 - compare BPM information with super harp scans while changing beam position, beam current and raster size




```
beam energy : > 6 GeV
beam current : 10 μA
beam raster : 1 x 1 mm<sup>2</sup>
target : central carbon
HMS angle : 15°
HMS momentum : -3.0 GeV/c
HMS collimator : large
SHMS momentum : -3.0 GeV/c
SHMS collimator : large
```


commissioning plan – part 1b

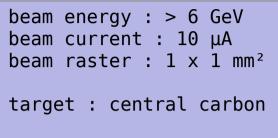
- standard HMS tune reestablishment
 - select electrons and make x_{fp} - y_{fp} plot
 - check if you see a "spider"
- beam-target interaction point verification
 - make x_{fp} - y_{fp} and x'_{tg} - y'_{tg} and y_{tg} plots
 - is central leg of x_{fp} - y_{fp} spider straight?
 - is the reconstructed y_{tg} position close to 0?
 - is central sieve slit hole in x'_{tg} - y'_{tg} close to (0,0)?
 - make corrections to beam position and repeat
- target-ladder verification
 - make short run with carbon hole target
 - this ensures consistency, cross-checks ladder position relative to beam, raster size on target and BPM readbacks


commissioning plan – part 1c

- SHMS quadrupole settings verification
 - make x_{fp} - y_{fp} plot "tilted hourglass"
 - verify that we have point-to-point focus
 - check if waist of hourglass is at (0,0)
 - change quadrupole strength until it is
 - check time-to-distance maps, align wire chamber positions in software, check detector positions, ...
- standard SHMS tune establishment
 - take runs with sieve
 - make x_{fp}-y_{fp} plot "spider"
 - check if center of spider is at (0,0)
 - compare with simulated patterns
 - change quadrupole strength until they match

```
beam energy : > 6 GeV
beam current : 10 \muA
beam raster : 1 x 1 mm<sup>2</sup>
```

target : central carbon

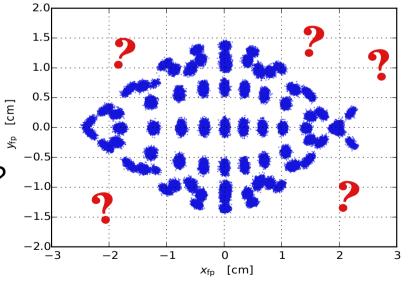

SHMS angle : 15°
SHMS momentum : -3.0 GeV/c
SHMS collimator : large

commissioning plan – part 1d

- detailed detector checkout
 - wire chamber high-voltage plateaus
 - shower counter calibration run
 - calibration spectra: carbon
 - check wire chamber time-to-distance maps, align wire chamber positions in software, optimize tracking properties, ...
 - calibrate calorimeter and Čerenkov
 - scintillator calibration run
 - defocused run: HMS and SHMS
 - adjust Q2 to illuminate whole focal plane
- would need input from detector builders
 - what kind of checks are needed?
 - what kinematics would be preferred?
 - some have already provided information


```
HMS angle : 15°
HMS momentum : -3.0 GeV/c
HMS collimator : large
```

```
SHMS angle : 15°
SHMS momentum : -3.0 GeV/c
SHMS collimator : large
```

commissioning plan – part 2

- SHMS quadrupole tuning
 - inelastic region
 - recheck tune from 3-pass beam
 - carbon elastic
 - check ground state to 2+ state ratio (0.5 : 1)
 - optimize tune for energy resolution
 - make x_{fp} - y_{fp} plot and compare it to simulation
- dispersion calibration
 - make 4% changes in the momentum
 - determine dispersion matrix elements
- beam sweep
 - influence on aberrative matrix elements?
- extended optics target running
 - determine the angular matrix elements

```
beam energy : 2.1 GeV
beam current : 20 μA
beam raster : off
target : central carbon
SHMS angle : 7°
SHMS momentum : -1.2 GeV/c
SHMS collimator : sieve
```

```
no SHMS noble-gas Čerenkov
```


commissioning plan – part 3a

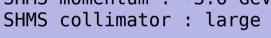
- beamline and optics verification
 - do superharp scans to check beamsize
 - check SHMS spider plots to verify optics
- discriminator thresholds setup
 - take small runs to setup PId trigger thresholds
- coincidence electronics timing checkup
- 1H(e,e'p) coincidence verification
- 1H or 12C(e,e' π) coincidence verification
- 1H(e'K) and 1H(e,e'K) running
 - write HMS and SHMS singles, and coincidences
 - check for evidence of kaons
 - check for evidence of (e,e'K) coincidences

```
beam energy : > 6 GeV
beam current : 50 \muA
beam raster : 1 x 1 mm<sup>2</sup>
```

target : 10 cm LH2

HMS angle : 25° HMS momentum : -2.6 GeV/c HMS collimator : large

```
SHMS angle : 15°
SHMS momentum : +3.6 GeV/c
SHMS collimator : large
```



commissioning plan – part 3b

- beamline and optics verification
- sieve slit measurements
 - calibrate angular and vertex position
 reconstruction for future L/T experiments
 - check spectrometer pointing at various angles
- 1H(e,e')p elastic checkout -
 - make series of elastic runs at different angles
 - verify optics and acceptance understanding of spectrometers
- 1H(e,e'p) coincidence checkout
 - take several runs (single, coincidence) with and without sieves
 - check angle and dp/p offsets for the spectrometers
- current dependence test
 - monitor e rates with LH2 (+ dummy) target for different currents


```
beam current : > 20 μA
beam raster : 1 x 1 mm<sup>2</sup>
target : 10 cm LH2
HMS angle : 27.5°
HMS momentum : -3.6 GeV/c
HMS collimator : large
SHMS angle : 27.5°
SHMS momentum : -3.6 GeV/c
```

beam energy : 6.4 GeV

additional information

- SHMS optics working group wiki: https://hallcweb.jlab.org/wiki/index.php/SHMS_Optics_Working_Group
- commissioning plan wiki edition: https://hallcweb.jlab.org/wiki/index.php/Commissioning_Plan_2017
- KPP run plan wiki edition: https://hallcweb.jlab.org/wiki/index.php/KPP_Run_Plan
- welcome to join the SHMS optics working group

