QTOR Mapping and Main Detector for the Qweak Experiment

Peiqing Wang University of Manitoba

For the Qweak Collaboration

Jlab Hall C Users Meeting January 23, 2010

Qweak Toroidal Magnetic Spectrometer (QTOR)

- Resistive, iron-free toroidal magnet
- Symmetric 8 fold coil packages
- Hollow, water-cooled copper conductor
- Field integral ~ 0.67 T m
- DC current ~ 9 kA

The Qweak experiment requires:

- large acceptance
- good focusing, high symmetry
- clean separation for elastic and inelastic events

The field integral along the central electron trajectories need to be measured to <0.4% level

Zero-crossings of Toroidal Magnetic Field

• QTOR mapping is using the zero-crossing measurement technique, rather than a full 3D field measurement (huge mapping cost, many grid points are not accessible)

• The magnetic field of an iron-free toroidal magnetic spectrometer can be characterized by the zero crossing points in its fringe area, which are determined by the current distribution in the magnet.

• The current distribution can be described by means of the shape and location of individual current-carrying coils.

• A precision determination of the locations of zero crossing points enables us to infer the locations of the coils, leading to a complete determination of the toroidal magnetic field.

(Zero crossing points: the locations where individual magnetic field components change sign in a 3D magnetic field)

Zero-crossing Analysis

Zero-crossing positions (Z) are determined by coil locations (C), thus the 1^{st} order approximation gives:

$$\Delta Z = \sum_{n} \left(\frac{\partial Z}{\partial C}\right) \Delta C$$

 ΔZ : zero-crossing displacements (known from simulations and measurements)

 $\partial Z/\partial C$: derivatives (sensitivities, known from simulations)

ΔC: coil misalignments (unknown)

n: the degrees of coil freedom

The unknown ΔC then can be obtained from solving the above linear equations:

- More unknowns can be involved in the linear equations (such as the misalignment of mapping device),

- Measure more zero-crossings than unknowns to minimize the uncertainty through least squares fit

QTOR Zero-crossing Points

- Qweak magnet model: each as-build coil is characterized in detail
- Model gives zero-crossing points for normal and displaced coil positions
- Zero-crossing points are sensitive to coil positions
- Measure zero-crossing points ==>> complete determination of the magnetic field

Displacement of Zero-crossing Points

Magnetic Field Mapping Device

Precise, 3D automated field mapping device was used to determine the location of zero-crossings

(position determination: ±0.2 mm, magnetic field determination: ±0.2 Gauss)

3-axis Hall effect transducer can measure 3 orthogonal magnetic field components

Magnetic Field Mapping

(G0 field mapping at Univ. of Illinois)

Zero-crossing measurement for the Qweak toroidal magnetic spectrometer at the MIT-Bates Laboratory Zero-crossing technique has been validated in the G0 magnetic field determination

Experimental Zero-crossing Points

Coil Misalignments from Fitting

10

Impact of Misalignments on Field Integral

send a family of scattered electrons, alternatively, through the fields

 (the field with nominal coil positions and the field with displaced coil positions)
 calculate the field integral along the trajectories and make a comparison: Δ ∫ B dl = 0.3%

The electron hit positions on the detector

QTOR Installation in Hall C

• Present results of QTOR mapping at MIT-Bates provide a good description of coil positions

The QTOR magnet was

- fiducialized at MIT-Bates
- transported to Jlab
- reinstalled in Hall-C

The preliminary analyzed survey results indicate displacements of the coils of ~ 1.5 mm

QTOR Mapping Status

- The QTOR mapper was transported from the Bates Accelerator Facility to Jefferson Lab in early January, and arrived in Hall-C on January 5.

- Since then, Q-weak collaborators from Canada traveled to JLab to reassemble and calibrate the QTOR mapper.

- The field mapper has been reassembled, briefly tested, and had its motion recalibrated using the JLab survey group's laser-tracker.

- At this time, it is located near the QTOR magnet and ready to be craned into position

- The field mapping is scheduled for early February 2010.

Qweak Main Focal Plane Detectors

- Qweak spectrometer has 8 octants, providing a clean seperation of elastic and inelastic events on the focal plane
- The eleastic events rate: 800 MHz/octant
- The detectors need to cover elastic area, run in current mode
- Detector design considerations: Radiation hardness (~ 300 kRad), Background (photon, neutron)

- Detector solid angle ~45 msr, $\pmb{\varphi}$ acceptance ~ 53% of 2 π

Synthetic Quartz Čerenkov Detectors

- Radiation hard (>300 kRad)
- Insensitivity to background

Specifications:

- 200 cm x 18 cm x 1.25 cm synthetic quartz bars
- 5" PMT's attached
- Operation at counting and current mode (current mode readout $I_a = 6 \mu A$)

Spectrosil 2000 Synthetic Quartz Bar (an artificial fused silica by St. Gobain)

Optimize Quartz Bar Thickness

- Light yield in the quartz bar directly relates to the asymmetry measurement
- Geant4 simulation for light production and collection optimized the detector design

A thicker quartz bar produces more light, but shower effects in the thicker quartz bar will generate excess noise, leading to a longer experimental time.

function of detector thickness

The optimized detector thickness is 1.25 cm

of detector thickness

Rate, light distribution and Q² Bias

Detector Assembly

- Quartz bar and quartz light guide
- PMTs and bases
- Mounting frame/brackets and PMT housing
- Detector windows
- accessaries (diagnostic LEDs, position)
- adjustment mechanics, etc.)

Detector model

Design constrains for the detector module:

- Light tightness
- Strain and stress free mounting of the quartz
- use minimum amount of low Z material around the detector
- Allow easy access to service the PMTs
- Minimize surface contact of housing material with the guartz bar
- Thin entrance and exit windows
- Allow for possible lining of the housing inside with reflective material
- Switch between event/current mode operation easily

Light Yield and Distribution Test

Main Detector Status and Schedule

 Preliminary tests (radiation hardness, magnetic field sensitivity, transparence, optical glue properties, scintillation and neutron background, light yield ...) are complete

 Custom designed main preamplifiers,
 VME integrator (ADC's) and PMT bases were built and tested

 8 detectors were assembled, ready for installation

 More tests with full detector assembly are underway.

 Installation of the detectors in the Qweak experiment is scheduled (3 by end of February, another 5 in early April, 2010)