Recent Spectroscopic Investigation of Λ-Hypernuclei by the (e,e'K⁺) Reaction

-Analysis Status of E01-011 & E05-115-

Chunhua Chen Hampton University Feb. 21, 2014

Λ HYPERNUCLEAR SPECTROSCOPY VIA (e,e'K⁺)

Merits of the (e,e'K⁺) experiment

- © Large momentum transfer
- \rightarrow Excitation of deeply-bound state
- \bigcirc p to Λ reaction \rightarrow Mirror and Neutron-rich hypernuclei
- © Spin-flip/non-flip production
- High Energy Resolution due to CEBAF beam's quality

<u>2005(E01-011)</u> 2^{nd} Experiment : ${}^{7}_{\Lambda}$ He ${}^{12}_{\Lambda}$ B, ${}^{28}_{\Lambda}$ Al

- Newly-constructed HKS for K⁺ side
- Apply "Tilt Method" for e' side

2009(E05-115) 3rd Experiment: ${}^{12}{}_{\Lambda}B$, ${}^{7}{}_{\Lambda}He$, ${}^{10}{}_{\Lambda}Be$, ${}^{9}{}_{\Lambda}Li$ and ${}^{52}{}_{\Lambda}V$ ***** Beam Energy 1.8 \rightarrow 2.344 GeV ***** Brand-new e' spectrometer, HES **Calibration by the elementary process** $p(e,e'K^+)\Lambda$ or Σ : CH₂

INTRODUCTION

Physical Goals:

- To understand YN and YY interactions
- To explore and understand nuclear structure using Λ as a probe
 - Model the baryonic many body system
 - Study the role of Λ in the nuclear medium

• Shell Model with Λ -N Effective Potential ($p_N s_\Lambda$) for p-shell hypernuclei

 $V_{\Lambda N} = V_0(r) + V_{\sigma}(r) \boldsymbol{s}_N \cdot \boldsymbol{s}_{\Lambda} + V_{\Lambda}(r) \boldsymbol{L}_{N\Lambda} \cdot \boldsymbol{s}_{\Lambda} + V_N(r) \boldsymbol{L}_{N\Lambda} \cdot \boldsymbol{s}_N + V_T(r) \boldsymbol{S}_{12}$

Radial Integrals Coefficients of operators

• Additional Contribution: Λ - Σ coupling

Our results with precise B_{Λ} are important in helping to determine these parameters as well as to explore the full spectroscopy with unseen core states.

Spectrometer System Calibration

Spectrometer system calibration: key to reach sub-MeV energy resolution
Common splitter : Separated single arm calibration is impossible
Technique: 2-arm coupled calibration for both kinematics and optics

Using known masses of Λ , Σ^0 from CH₂ target and identified known hypernuclear bound states (${}^{12}_{\Lambda}B$ g.s.) for spectrometer calibration

E05-115 spectrometer system

CALIBRATION DATA RESULT

E05-115

E01-011

Phys. Rev. Lett. 99, 052501 (2007) (HallA data)

D

Phys. Rev. Lett. 99, 052501 (2007) (HallA data)

D

$12^{\Lambda}B$

Double gaussian Fitting for ¹² Bg.s.

Experiment	Fitting σ (KeV)	Separation (KeV)	ratio
E05-115	231±2	170±21	2.7±1.8
E01-011	300±3	177±21	3.35±1.65

Systematic uncertainty for E05-115 = ±0.11MeV Systematic uncertainty for E01-011 = ±0.16MeV

Peak	B _Λ (MeV)	B _A (MeV)	Average
	(E05-115)	(E01-011)	B_{Λ} (MeV)
#1-1	-11.508 ± 0.025 -	-11.521 \pm 0.031 -	-11.515 \pm 0.028 -
#1-2	11.338 ± 0.025	11.344 ± 0.031	11.341 ± 0.028
#2	-8.425 ± 0.047	-8.390 ± 0.075	-8.408 ± 0.063
#3	-5.488 ± 0.052	-5.440 ± 0.085	-5.462 ± 0.070
#4	-2.499 ± 0.075	-2.882 ± 0.085	-2.691 ± 0.080
#5	-1.220 ± 0.056	-1.470 ± 0.091	-1.345 ± 0.076
#6	-0.524 ± 0.024	-0.548 ± 0.035	-0.536 ± 0.030
#7	0.223 ± 0.039	$\textbf{0.318} \pm \textbf{0.085}$	$\textbf{0.271} \pm \textbf{0.066}$
#8	$\textbf{1.047} \pm \textbf{0.078}$	$\textbf{0.849} \pm \textbf{0.101}$	$\textbf{0.948} \pm \textbf{0.090}$

Fixed fitting sigma for E05-115=231KeV Fixed fitting sigma for E01-011=300KeV

States from Λ in s-shell coupled to the low lying ¹¹B core states

K. Hosomi et al., Nuclear Physics A 914 (2013) 184–188

4th doublet separation: $\Delta E(1_3^- - 2_3^-) \approx 0.213 \ (\pm 0.09 \text{stat.} \pm 0.07 \text{sys.}) \text{ MeV}$ Theory prediction: $\Delta E(1_3^- - 2_3^-) = 0.107 \text{ MeV}(\text{Millener})$

$12_{\Lambda}B$ States from Λ in p-shell

 P_{Λ} means a strong mixing of $P_{3/2\Lambda}$ and $P_{1/2\Lambda}$.

M.Iodice, et.al., Phys. Rev. Lett. 99, 052501 (2007)

Peak	Structure	Jπ	Measured E _x (MeV)	Calculated E _x (MeV)
b	¹¹ B(3/2 ⁻ ; g.s.) \otimes P _{3/2Λ}	2 ₁ +	10.170 ± 0.081	10.48
	¹¹ B(3/2 ⁻ ; g.s.) \otimes P $_{\Lambda}$	1_{1}^{+}		10.52
С	¹¹ B(3/2 ⁻ ; g.s.) \otimes P _{1/2Λ}	2 ₂ ⁺	10.979 ± 0.041	10.98
	¹¹ B(3/2 ⁻ ; g.s.) \otimes P _{3/2Λ}	3 ₁ +		11.05
е	¹¹ B(1/2 ⁻ ; 2.125) \otimes P _{3/2} $_{\Lambda}$	2 ₃ +	12.463 ± 0.094	12.95
	11 B(1/2 ⁻ ; 2.125) \otimes P $_{\Lambda}$	1 ₃ +		13.05

а	9.009±0.077	sd shell ¹¹ B Core \otimes S $_{\Lambda}$
d	11.731±0.043	sd shell ¹¹ B Core \otimes S $_{\Lambda}$

sd shell ¹¹B shell structure: S⁴P⁶(sd)

Such unpredicted structures appear to be common in previously measured ¹² _AC and ¹² _AB spectrum

Dr. D.J. MILLENER says:

Thus, hypernuclear states based the 9.873 and 11.60-MeV states (¹¹B 1ħω shell state) are the best candidates for the two extra peaks that you see. One day, I will do the shell-model calculation.

⁷[/]He

PRL 110, 012502 (2013)

⁷_^He

PRL 110, 012502 (2013)

χHe Missing Mass

peak	Mean(MeV)	σ(KeV)
1	-5.54	253
2	-4.01	379
3	-2.97	375

n

n

		σ(KeV)	Mean(MeV)	peak
E _Λ ~ 130keV	Δ	253	-5.54	1
$\frac{3^{+}}{2} / \frac{5^{+}}{2}$		379	-4.01	2
272		375	-2.97	3
				and the second sec

PRELIMINARY RESULT – ¹⁰ Be

վ₀Be Missing Mass

PRELIMINARY RESULT – ¹⁰ Be

Calculated by D.J. Millener

PRELIMINARY RESULT – ¹⁰ Be

Preliminary Status – ²⁸ Al

Preliminary Status – ²⁸ Al

SUMMARY

- Our systematic calibration is almost completed;
- The precise level structure of p-shell Λ hypernuclei (⁷_ΛHe, ¹⁰_ΛBe, and ¹²_ΛB) are evidential and encouraging;
- There is stronger evidence for sd-shell nuclei from spectroscopy of ¹²_AB and ²⁸_AAl;
- $\circ {}^{52}{}_{\Lambda}V$ spectroscopy is coming soon.

CALIBRATION PROCEDURE $f(E_{beam}, P_k, xt'_k, yt'_k, P_{e'}, xt'_{e'}, yt'_{e'})$

 $= \begin{pmatrix} M_angle \\ M_momentum \end{pmatrix} \begin{pmatrix} x_f \\ xf' \\ yf \\ yf \end{pmatrix}$

Initia

Matrice

$$\begin{split} MM &= f(E_{beam}, P_k, xt'_k, yt'_k, P_{e'}, xt'_{e'}, yt'_{e'}) \\ &= f(Ebeam_0 + \Delta E_{beam_0}, P_{k0} + \Delta P_{k0}, xt'_k, yt'_k, \\ P_{e'0} + \Delta P_{e'0}, xt'_{e'}, yt'_{e'}) \end{split}$$

 $P = P0(1+\delta/100)$

- Field Map Correction Real Optics
 - ✓ Agreement between Simulation data and Real SS data
 - Independence of invariant mass to reconstructed kinematical parameters. (Λ&Σ; P,xt',yt')
- Mathematical optimization by Nonlinear Least Chi² fitting
 - a. Central kinematics scan $(m_{\Lambda}, m_{\Sigma}, \Delta m_{\Lambda\Sigma})$
 - b. Angular matrices $(m_{\Lambda}, m_{\Sigma}, \sigma)$
 - c. Momentum matrices $({}^{12}_{\Lambda}Bgs)$
 - d. Iteration

Kinematics of the E05-115 Experiment

FIG. 2. Energy level scheme for Al²⁷.

12B Missing Mass

peak		Mean(Me V)	σ(KeV)
-	L	-11.41	265
2	2	-8.48	231
	3	-5.54	210
	а	-1.164	
4	b	-0.485	240
	С	0.295	
	d	-2.539	281
	е	1.146	172
C. L. Martin	and the second second	and the second second	and the second

#4 —	2+/1+ 1.146 2+/3+ -0.485 2+/1+ -1.164	$>>$ s ⁴ p ⁶ (sd) \otimes s _{Λ}	ре	ak	Mean(Me V)	σ(KeV)
			-	L	-11.41	265
#3 —	<u> </u>		2	2	-8.48	231
			3	3	-5.54	210
#2 —	18.48			а	-1.164	
#1 🗕	-11.41	2 ⁻ -11.356 Preliminary	4	b	-0.485	240
#1	E05115	1 ⁻ -11.535 simulation		С	0.295	
	Fitting			d	-2.539	281
				е	1.146	234

Peak	Β _Λ (MeV)	Β _Λ (MeV)	Average	Cross section (nb/sr)	Cross section (nb/sr)
	(E05-115)	(E01-011)	B_{Λ} (MeV)	(E05-115)	(E01-011)
#1-1	-11.508 ± 0.025 -	-11.521 ± 0.031 -	-11.515 \pm 0.028 -	83.0 ± 3.0	$\textbf{101.0} \pm \textbf{4.2}$
#1-2	11.338 ± 0.025	11.344 ± 0.031	11.341 ± 0.028		
#2	-8.425 ± 0.047	-8.390 ± 0.075	-8.408 ± 0.063	19.1 ± 4.7	33.5 ± 6.0
#3	-5.488 ± 0.052	-5.440 ± 0.085	-5.462 ± 0.070	18.0 ± 4.6	26.0 ± 5.4
#4	-2.499 ± 0.075	-2.882 ± 0.085	$\textbf{-2.691} \pm 0.080$	$\textbf{16.2} \pm \textbf{4.8}$	20.5 ± 5.0
#5	-1.220 ± 0.056	-1.470 ± 0.091	-1.345 ± 0.076	28.7 ± 6.2	31.5 ± 6.3
#6	-0.524 ± 0.024	-0.548 ± 0.035	-0.536 ± 0.030	$\textbf{75.7} \pm \textbf{12.1}$	87.7 ± 11.5
#7	0.223 ± 0.039	$\textbf{0.318} \pm \textbf{0.085}$	0.271 ± 0.066	39.0 ± 7.7	46.3 ± 16.4
#8	$\textbf{1.047} \pm \textbf{0.078}$	$\textbf{0.849} \pm \textbf{0.101}$	$\textbf{0.948} \pm \textbf{0.090}$	$\textbf{27.8} \pm \textbf{5.8}$	28.5 ± 10.8

 $12_{\Lambda}B$

$\mathbf{12}_{\mathbf{\Lambda}}\mathbf{B}$ States from $\mathbf{\Lambda}$ in p-shell

sd shell ¹¹B shell structure: S⁴P⁶(sd)

Such unpredicted structures appear to be common in previously measured ¹² _AC and ¹² _AB spectrum

Peak	Average Β _Λ (MeV)	Average E _x (MeV)	Structure	Jπ	Cross section (nb/sr) (E01-011)	Cross section (nb/sr) (Theory Estimate)
#1-1 #1-2	-11.515 ± 0.028 -11.341 ± 0.028	0.000 0.174 ± 0.028	$^{11}B(3/2^{\circ}; g.s.) \otimes S_{1/2\Lambda}$ $^{11}B(3/2^{\circ}; g.s.) \otimes S_{1/2\Lambda}$	11 21	101.0 ± 4.2	99.8
#2	-8.408 ± 0.063	3.107 ± 0.069	$^{11}B(1/2^{\circ}; 2.125) \otimes S_{1/2\Lambda}$ $^{11}B(1/2^{\circ}; 2.125) \otimes S_{1/2\Lambda}$	1 ₂ 0	33.5 ± 6.0	32.8
#3	-5.462 ± 0.070	6.053 ± 0.085	$^{11}B(3/2^{\circ}; g.s.) \otimes S_{1/2\Lambda}$ $^{11}B(3/2^{\circ}; g.s.) \otimes S_{1/2\Lambda}$	11 21	26.0 ± 5.4	12.4 4.0
#4	-2.691 ± 0.080	8.824 ± 0.085			20.5 ± 5.0	
#5	-1.345 ± 0.076	10.170 ± 0.081	$^{11}B(3/2^{\circ}; g.s.) \otimes P_{3/2\Lambda}$ $^{11}B(3/2^{\circ}; g.s.) \otimes P_{\Lambda}$	21 [*] 11 [*]	31.5 ± 6.3	5.1 2.6
#6	-0.536 ± 0.030	10.979 ± 0.041	$^{11}B(3/2^{\circ}; g.s.) \otimes P_{1/2\Lambda}$ $^{11}B(3/2^{\circ}; g.s.) \otimes P_{3/2\Lambda}$	22 ⁺ 31 ⁺	87.7 ± 11.5	30.5 46.7
#7	0.271 ± 0.066	11.786 ± 0.072			46.3 ± 16.4	
#8	0.948 ± 0.090	12.463 ± 0.094	$^{11}B(1/2^{\circ}; 2.125) \otimes P_{3/2\Lambda}$ $^{11}B(1/2^{\circ}; 2.125) \otimes P_{\Lambda}$	23 ⁺ 13 ⁺	28.5 ± 10.8	19.4 5.8

 $12_{\Lambda}B$

States from Λ in s-shell coupled to the low lying ¹¹B core states

1 A	BLE I	1.7	
Energy	levels	s of	11 B

$E_{\rm x}$ (MeV±keV)	J"; T	$ au_{\rm m} ({ m fsec})^{\rm a})$ or $\Gamma_{\rm c \ m} ({ m keV})$	Decay	Reactions
0	3 ⁻ ; 1/2	stable		1, 2, $6 \rightarrow 8$, $12 \rightarrow 17$, 21 > 25 = 28 = 20 > 62
2.124693 ± 0.027	1-2-	$\tau_{\rm m}=5.5\pm0.4$	γ	$1, 6 \rightarrow 8, 12 \rightarrow 17, 21 \rightarrow 23, 28, 30, 31, 33, 34, 37,$
4.44489 ± 0.50	5-2	1.18 ± 0.04	γ	38, 41, 46, 48 \rightarrow 55, 57 \rightarrow 63 1, 2, 6 \rightarrow 8, 12 \rightarrow 14, 17, 21 \rightarrow 23, 25, 27, 28, 30, 31, 33, 34, 37, 38, 41, 49,
				51 → 54, 58 → 63

		-		
5.02031 ± 0.30	3- 2	0.34±0.01	γ	1, $6 \rightarrow 8$, 13, 14, 21 \rightarrow 23, 25, 28, 30, 31, 33, 34,
6.7429 ± 1.8	<u>?</u> 2	22±5	γ	$37, 38, 49, 50, 52 \rightarrow 54, 58 \rightarrow 61, 63$ $1, 2, 6, 13, 14, 17, 21 \rightarrow 23, 25, 27, 30, 34, 37, 38, 40, 52, 53, 55, 58$
6.79180±0.30	1+ 2	1.7±0.2	γ	58, 49, 52, 55, 55, 58, 59, 60, 62, 63 1, 2, 6, 13, 14, $21 \rightarrow 23$, 28, 30, 34, 38, 41, 52, 53, 55, 63
7.28551 ± 0.43	<u>5</u> + 2	0.57 ± 0.04	γ	$1, 2, 6, 12 \rightarrow 14, 21 \rightarrow 23,$ 28, 30, 34, 53, 63
7.97784 ± 0.42	<u>3</u> + 2	0.57 ± 0.06	γ	1, 2, 13, 21, 22, 28, 30,
8.5603 ± 1.8	×2	0.70 ± 0.07	γ	1, 12, 13, 21, 22, 30, 31, 34, 59
8.9202 ± 2.0	<u>5</u> - 2	$\Gamma = 4.37 \pm 0.02 \text{ eV}$	γ, α	1, 2, 12, 13, 17, 21, 22, 25, 26, 30, 31, 34, 58, 59
9.1850 ± 2.0	<u>7</u> +	$1.9^{+1.5}_{-1.1} eV$	γ,α	1, 2, 13, 21, 22, 26, 34, 61
9.2744 ± 2	<u>\$</u> +	4	γ,α	1, 2, 13, 21, 22, 34, 61
9.876±8	<u>3</u> +	110 ± 15	α	5, 13, 28
10.26 ± 15	3	165 ± 25	γ, α	2, 5, 13
10.33 ± 11	5-2	110 ± 20	γ,α	2, 5, 13, 22, 34
10.597 ± 9	$\frac{7}{2}$ +	100 ± 20	γ, α	2, 5, 13, 18, 20, 34
10.96 ± 50	5	4500	α	5
11.265 ± 17	2+ 2	110 ± 20	α	5, 13
11.444 ± 19		103 ± 20	α	5, 13
11.589 ± 26	5+ 2	170 ± 30	n, a	3, 5, 13, 18, 20, 34
11.886 ± 17	5-2	200 ± 20	n , α	3, 5, 13, 18, 20
12.0 . 200	7+	1000		5 10 30