A future π^0 detection facility in Hall C

Marco Antonio Pannunzio Carmignotto
A future π^0 detection facility in Hall C

- **Scientific motivation**
 - L/T cross section separation
 - A π^0 detector for Hall C

- **Detector design**
 - PbWO4 crystals
 - Temperature controlled frame
 - Sweeping magnet
 - fADC
 - PMT base modification for high rate

- **Simulations**
 - GEMC/GEANT4 simulation
 - Cluster finding
Scientific motivation
Meson Reaction Dynamics

Small \(-t\) and large \(W\) → \(t\)-channel process
- Meson form factor describes the spatial distribution of the nucleon

High \(Q^2\) → “handbag” diagram
- The non-perturbative (soft) physics is represented by the GPDs
 - Shown to factorize from QCD perturbative processes for longitudinal photons [Collins, Frankfurt, Strikman, 1997]
Example: Ratio $R = \sigma_L/\sigma_T$ in the Exclusive limit

- Production of π^+ and K^+ feature a meson exchange contribution in the t-channel (pole term), whose impact on factorization has to be understood.

- In π^- production the pole term is suppressed:
 - The t-dependence at small t can thus be associated with the structure of the nucleon rather than its pion cloud.
 - A large $R = \sigma_L/\sigma_T$ would imply the realization of the factorization theorem.
 - A large response in σ_L may indicate non-pole contributions in π^+ production.

- Comparison of R in π^- and π^+ production important for understanding:
 - Pole and non-pole contributions in nucleon (spin) structure studies.
 - Non-pole contributions in F_π extraction.
A new π^0 L/T facility in Hall C

- New PbWO$_4$ calorimeter provides π^0 detection facility in Hall C

- Provides opportunities to extend separations program for DVCS
 - initial DVCS separation
 - extensions to a broader kinematic range anticipated

MRI Consortium proposal submitted Jan 2012: CUA, ODU, FIU, JLab, Yerevan
Detector design
The detector system will consist of

PbWO4 blocks of the PRIMEX setup in a new temperature controlled frame

Essentially deadtime-less digitizing electronics

A sweeping magnet

HV bases with built-in amplifiers
PbWO$_4$ crystals

- Existing crystals from Primex Experiment

π^0 detector features:

- 31 x 36 matrix of PbWO$_4$ crystals
- 2.05 x 2.05 x 18 cm3 each crystal

Energy resolution

$\sigma = 2.45\% @ 1. \text{ GeV}$

Spatial resolution

$\sigma = 5.6 \text{ mm @ 1. GeV}$
PbWO4 crystal has light yield of 2.5% / °C (at 25°C)

For measurement, temperature must be stable to ~0.1°C to achieve energy resolution of 0.5%

Construction of a frame to control the setup temperature:

- Temperature sensors
- Copper plates to refrigerate system
- Water cooling system
Resistive magnet based on the Horizontal Bend (HB) magnet design

☑ Normal-conducting copper coil magnet
☑ Aperture of 35x36 cm²
☑ Magnetic field strength of 0.3 T.m
☑ Design similar to the super-conducting dipole (HB) of the SHMS

Hall C Horizontal Bend(HB) SC Magnet Cutaway
(shown with HMS Q1)
Usage of flash ADCs

- Continuous sampling of the signal – 4ns window
- Internal buffer for pre-trigger sampling
- FPGA for sampling and bufferizing signal. Also possible to create advanced online processing for trigger system, e.g. cluster finding, ...
- FPGA → real parallel processing → “no” electronic deadtime
High Voltage Base Design

- Adding two high-voltage transistors to the last two dynodes:
 - Drain current and do not change the division ratio
Active bases for PMTs

- The new active base design outperforms the Primex PMT/base by a factor of ~25:
 - Increases the maximum linear count rate: from 30kHz to 1.2MHz
 - Changes the gain stability from ±5% to ±1%
Simulations
Simulation of the calorimeter

- Single photon hitting the small detector in GEMC/GEANT4

Shower spreads in the neighbor crystals, making possible a sub-crystal resolution
Shower profile simulation

3 GeV photon hitting the center of the crystal

Front view

3D view

Side view
Cluster finding algorithm

Simple case: no background

- Find two crystals with greatest energy and with a minimum distance between them
- Make a square cluster using the energetic crystal, in order to maximize energy in the cluster
- Fit a 3D gaussian using crystals in the clusters
Simulating background

- Magnetic field before the detector to reduce charged particles background
Events with two photons from π^0 decay and background

Considering background
Changes in integration time window
Outlook

- π^0 calorimeter pre-design tests are ongoing
- MRI/NSF has been submitted in January/2012
- Detector simulations and existing components are being studied