Proposal PR12-12-011:
Asymmetry Measurements to Extract G_E^n and G_M^n at $Q^2 = 1 - 2.6 \text{(GeV/c)}^2$ from the Inclusive $^3\text{He}(\bar{e},e')$ Reaction

Vincent Sulkosky
Massachusetts Institute of Technology
On Behalf of T. Averett (W&M), D. W. Higinbotham (JLab), B. E. Norum (UVa)
for the PR12-12-011 Collaboration

Hall C Summer Workshop
June 23rd, 2012
Motivation

- **Neutron** not understood to the same accuracy as the proton
- No pure neutron target
- **Indirect measurements** using appropriate targets: deuteron and/or ^3He

- High precision measurement will help pin down theoretical treatments on the extraction of the neutron electromagnetic form factors from different nuclei (deuteron and ^3He) and different reaction channels $A(e,e')$ and $A(e,e'n)$

- Theoretical models and parameterizations begin to diverge for $Q^2 > 1 (\text{GeV}/c)^2$

- Compared to the other form factors the precision on G_E^n is poorly constrained over the measured Q^2 range (**only** three data points have a precision better than 10%)
Extraction of G_E^n at $Q^2 = 0.98$ (GeV/c)2 by Measurements of $^3\text{He} (e, e')$

- G_E^n was extracted for the first time by inclusive polarized measurements from ^3He at $Q^2 = 0.98$ (GeV/c)2
- Form the ratio of asymmetries for longitudinal and transverse target polarization; use the well known proton electromagnetic and the neutron magnetic form factors
- **Proton and neutron contributions calculated in PWIA**
- This technique agrees with previous measurements; uncertainty $\sim 19\%$ (limited by statistics in only a few shifts of data)
- **Note:** M. Sargsian and G. Salme` are ready to support full model extractions of precision data
Helicity Asymmetry in Electron Scattering

$$A = -\frac{\sin \theta \cos \phi \nu_{TL} R_{3He} R_{TL} + \cos \theta \nu_T R_{3He} R_{T'}}{\nu_L R_{3He} L + \nu_T R_{3He} T'}$$

where R's are response functions and ν's are kinematics factors

Ratio of Asymmetries

when $\theta^* = 0$, transverse asymmetry

$$A_{TL'} = -\frac{v_{TL'} R^{3He}_{TL'}}{v_L R^{3He}_L + v_T R^{3He}_T}$$

when $\theta^* = \pi / 2$ and $\phi^* = 0$, transverse-longitudinal asymmetry

$$A_{TL'} = -\frac{v_{TL'} R^{3He}_{TL'}}{v_L R^{3He}_L + v_T R^{3He}_T}$$

$$\Rightarrow \frac{A_{TL'}}{A_T'} = \frac{v_{TL'} R^{3He}_{TL'}}{v_T R^{3He}_T}.$$
^{3}He Inclusive Response Functions near the Quasi-elastic Peak in PWIA

Transverse-longitudinal:

\[R^{^{3}\text{He}}_{\text{TL'}} = -\sqrt{2} \left[2 G_E^p G_M^n H_p^{\text{TL'}} + G_E^n G_M^p H_n^{\text{TL'}} \right] \]

Transverse:

\[R^{^{3}\text{He}}_{T'} = \frac{Q^2}{2qM} \left[2(G_M^p)^2 H_p^{T'} + (G_M^n)^2 H_n^{T'} \right] \]

where H's are calculated by momentum distribution and nucleon polarization in ^{3}He

A. Kievsky, E. Pace, G. Salme’, and M. Viviani, PRC 56 (1997) 64
\[^3\text{He} \text{ spin structure} \]

- Spin-1/2 Particle, 3 spin-1/2 Nucleons (Proton and Neutron)
- Protons are in spin-singlet state. \(^3\text{He}\) spin is dominated by spin of \(n\). Therefore \(^3\text{He}\) can be used as an effective \(n\) target
- S’ mixed symmetry, (spin-isospin)-space correlations

\[
\frac{\mu_{^3\text{He}}}{\mu_n} = \frac{-2.131}{-1.913} \approx 1
\]

Angular Momentum:
- S: \(L=0\) \(\sim 90\%\)
- S’: \(L=0\) \(\sim 1-2\%\)
- D: \(L=2\) \(\sim 8\%\)
Ratio of Asymmetries as a Function of Form Factors

\[\frac{A_{TL'}}{A_T'} = \frac{v_{TL'}(-\sqrt{2} [2 G_E^p G_M^p H^{p TL'} + G_E^n G_M^n H^{n TL'}])}{v_T' \left(\frac{Q^2}{2qM} \left[2(G_M^p)^2 H^{p T'} + (G_M^n)^2 H^{n T'} \right] \right)} \]

- By measuring \(A_{TL}/A_T \) and using \(G_E^p, G_M^p, \) and \(G_M^n \) as known parameters can one extract \(G_E^n \)
G_E^n from $^3\text{He}(e,e')$ at $Q^2=0.98$ (GeV/c)2
with a few shifts of data

Analysis by Jin Ge

$G_E^n = 0.0414 \pm 0.0077$ (stat) ± 0.0019 (syst)

Hall C Summer Workshop 23 June 2012 Inclusive GEn Measurements
Overview of Experiment

\[\text{Measure inclusive double-polarized } \ ^3\text{He asymmetries} \]

\[\text{Use the Hall C Super High Momentum Spectrometer (SHMS) to detect the scattered electrons at 6 and 8.5 degrees with 11 GeV beam} \]

\[\text{Use the upgraded polarized } \ ^3\text{He target planned for the } A_1^n (E12-06-110) \text{ and } d_2^n (E12-06-121) \text{ experiments} \]

\[\text{Considering to detect the knock-out proton in the High Momentum Spectrometer (HMS)} \]
6-GeV Performance of 3He Target

- Luminosity: $L(n) = 10^{36}$ cm$^{-2}$ s$^{-1}$
- Achieved record high steady $\sim 60\%$ polarization with a beam current up to 15 μA

![Average 3He pol. = 55%](image)

![History of Figure of Merit of Polarized 3He Target](image)
Planned ^3He Target for 12-GeV Experiments

- Upgrade takes advantage improvements of hybrid spin exchange optical pumping and spectrally narrowed lasers

- This proposal takes advantage of the already planned factor of 8 improvement in polarized luminosity discussed in the approved A_1^n experiment (Hall C)
 - “Dual transfer tube” design for convection mixing of polarized gas
 - Additional diagnostics for direct measurement of ^3He and alkali-vapor polarizations
 - Metal end-cap cells, partial metal cell and/or Be end windows

- Goal: 60% target polarization with a beam current of 60 μA on a 60-cm long target
Form Factor Sensitivity to Asymmetry Ratio

\[A_{ratio} = \frac{A_{TL'}}{A_T} \]
Kinematics and Rates

- Utilize full capabilities of SHMS (11 GeV forward angle)
- Take advantage of the rate boost from σ_{Mott}
- Helps minimize inelastic backgrounds
- Estimated quasi-elastic counting rates for a 42-cm long target with 60% target polarization, 80% beam polarization at 60 μA
- Based on J. Arrington parameterization for G_E^p and G_M^p and CLAS data for G_M^n

<table>
<thead>
<tr>
<th>E_0 [GeV]</th>
<th>E' [GeV]</th>
<th>θ_{SHMS} [deg]</th>
<th>Range of θ_{lab} [deg]</th>
<th>Q^2 (GeV/c)2</th>
<th>e$^-$ rate [kHz]</th>
<th>t_\parallel [hrs]</th>
<th>t_\perp [hrs]</th>
<th>ΔA_\parallel [$\cdot 10^{-4}$]</th>
<th>ΔA_\perp [$\cdot 10^{-4}$]</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.0</td>
<td>10.437</td>
<td>6</td>
<td>5 – 6</td>
<td>1.057</td>
<td>7.70</td>
<td>48</td>
<td>6</td>
<td>0.8</td>
<td>2.2</td>
</tr>
<tr>
<td>11.0</td>
<td>10.229</td>
<td>6</td>
<td>6 – 7</td>
<td>1.446</td>
<td>1.446</td>
<td>1.446</td>
<td>1.446</td>
<td>1.446</td>
<td>1.446</td>
</tr>
<tr>
<td>11.0</td>
<td>9.874</td>
<td>8.5</td>
<td>7.5 – 8.5</td>
<td>2.114</td>
<td>0.37</td>
<td>240</td>
<td>36</td>
<td>1.6</td>
<td>4.1</td>
</tr>
<tr>
<td>11.0</td>
<td>9.612</td>
<td>8.5</td>
<td>8.5 – 9.5</td>
<td>2.604</td>
<td>240</td>
<td>36</td>
<td>1.6</td>
<td>4.1</td>
<td>4.1</td>
</tr>
</tbody>
</table>
Expected Results

\[G_E^n \]

- Neutron Recoil Polarization
- Polarized Deuteron
- Polarized He-3
- E05-102
- This Proposal

\[Q^2 \left[(\text{GeV}/c)^2 \right] \]
Concerns Raised by PAC 39 and TAC

- Polarized Inelastic background contamination
- Final State Interactions (FSI) and Meson Exchange Currents (MEC)
- Relativistic Effects
Inelastic Contamination

- Used the cross section models from Misak Sargsian and Peter Bosted (http://arxiv.org/abs/1203.2262)
- The two models agree well with each other at the top of the quasi-elastic peak with less than a 0.5% absolute difference

\[\delta = 2\% \]
Inelastic Contamination

- Used the cross section models from Misak Sargsian and Peter Bosted (http://arxiv.org/abs/1203.2262)
- The two models agree well with each other at the top of the quasi-elastic peak with less than a 0.5% absolute difference
- By varying the momentum cut, the effect of the contamination can be studied with the data

<table>
<thead>
<tr>
<th>Q^2 (GeV/c2)</th>
<th>Contamination $x = 1$ [%]</th>
<th>Contamination (dp = 2%) [%]</th>
<th>Contamination (dp = 1.5%) [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.06</td>
<td>0.3</td>
<td>0.7</td>
<td>0.4</td>
</tr>
<tr>
<td>1.45</td>
<td>1.5</td>
<td>3.0</td>
<td>1.7</td>
</tr>
<tr>
<td>2.11</td>
<td>4.6</td>
<td>8.8</td>
<td>4.9</td>
</tr>
<tr>
<td>2.60</td>
<td>7.8</td>
<td>11.9</td>
<td>6.8</td>
</tr>
</tbody>
</table>
Inelastic Contamination on Asymmetry

\[A_{QE} = \frac{(A_{raw} - f_c \cdot A_{in})}{1 - f_c} \]

- \(f_c \) is the amount of contamination under the quasi-elastic peak
- \(A_{QE}, A_{raw}, \) and \(A_{in} \) are the quasi-elastic, measured and inelastic asymmetries
- Using the determined contamination numbers from the models and the measured asymmetries from experiments E01-012 and E05-102 with the assumption that \(A_{in} = A_{\Delta} \), the effect on the asymmetry was calculated

<table>
<thead>
<tr>
<th>(Q^2) (GeV/c)^2</th>
<th>(A_{raw})</th>
<th>(A_{QE})</th>
<th>Difference [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>-0.1656</td>
<td>-0.1699</td>
<td>2.5</td>
</tr>
<tr>
<td>2.6</td>
<td>-0.2325</td>
<td>-0.2258</td>
<td>3.0</td>
</tr>
</tbody>
</table>
Comparison of Cross Sections at $Q^2 \sim 2.5 \text{ GeV}^2$

The quasi-elastic cross section is about a factor of 70x larger at forward angle compared to the GEN-1 data point.

• The proposed measurement benefits from the SHMS resolutions compared to BigBite
• We will also measure the inelastic contribution within the SHMS momentum acceptance, allowing us to **carefully choose our cuts for each Q^2 point**

Cross section model from P. Bosted
FSI and MEC vs. Q^2

- Experiment E08-005: recent $^3\text{He}^{\uparrow}(e,e'\text{n})$ single spin asymmetry (A_y) measurements, target polarized normal to scattering plane
- A_y vanishes in PWIA, and measurements of this asymmetry are a good check of FSI and MEC contributions
- Small asymmetry near 1 (GeV/c)2 is indicative that these mechanisms have become negligible
- Analysis by E. Long
Relativistic Effects

- Misak Sargsian compared his model calculation using the Virtual Nucleon and Light Cone approximations.
- He provided the difference in these two methods as the uncertainty due to relativistic effects.
- Giovanni Salme is constructing a Poincare invariant approach for the relativistic treatment in his calculation.
Relative systematic uncertainties from nucleon form factors, model (updated numbers from M. Sargsian), experimental (beam pol. 1.5%, target pol. 1%, radiative corrections 1%), and the inelastic contamination

GEp: 1% at $Q^2 = 1$ (GeV/c)2 with a linear increase up to 3% at 3 (GeV/c)2

GMp: 1% over the planned Q^2 range

GMn: 2% to 2.4% from the high precision Hall B data (J. Lachniet et al.)
Beam Time Request

<table>
<thead>
<tr>
<th>Description</th>
<th>Time (Hours)</th>
<th>Time (Days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long. Pol. 3He at 11 GeV, 6 degs</td>
<td>48</td>
<td>2</td>
</tr>
<tr>
<td>Trans. Pol. 3He at 11 GeV, 6 degs</td>
<td>6</td>
<td>0.25</td>
</tr>
<tr>
<td>Long. Pol. 3He at 11 GeV, 8.5 degs</td>
<td>240</td>
<td>10</td>
</tr>
<tr>
<td>Trans. Pol. 3He at 11 GeV, 8.5 degs</td>
<td>36</td>
<td>1.5</td>
</tr>
<tr>
<td>Dilution, calibrations</td>
<td>24</td>
<td>1</td>
</tr>
<tr>
<td>Total Time Requested</td>
<td>336 + 24</td>
<td>14 + 1</td>
</tr>
</tbody>
</table>

We requested a total of 15 days of beam time but we were deferred.
Summary

- Experiment is a straightforward $^3\text{He (e, e')}$ measurement at Q^2 from 1 to 2.6 (GeV/c)2
- Already have theoretical support from G. Salme and M. Sargsian to make G_E^n extractions from the data
- Makes use of the Hall C investments for the A_1^n and d_2^n experiments without requiring additional equipment
- We requested 15 days of beam
- However, the proposal was deferred with a recommendation from the PAC to take data parasitically during A_1^n and d_2^n at a Q^2 where G_E^n is reasonably measured to test our extraction method
Thank You!
PR12-12-011 Collaboration

D. S. Armstrong, T. Averett (Spokesperson), M. Cummings, W. Deconinck, H. Yao

College of William and Mary

K. Allada, A. Camsonne, O. Hansen, D. W. Higinbotham (Spokesperson), B. Sawatzky, P. Solvignon

Thomas Jefferson National Accelerator Facility

C. Hanretty, B. E. Norum (Spokesperson)

University of Virginia

W. Bertozzi, S. Gilad, A. Kelleher, S. Kowalski, V. Sulkosky (Spokesperson)

Massachusetts Institute of Technology

B. Anderson, E. Long

Kent State University

M. Mihovilović, S Širca

Jožef Stefan Institute and University of Ljubljana

University of New Hampshire

L. El Fassi, R. Gilman, K. E. Myers, A. Tadepalli, Y. Zhang

Rutgers, The State University of New Jersey

P. Markowitz

Florida International University

J. Huang

Los Alamos National Lab

W. Tireman

Northern Michigan University

T. Holmstrom

Longwood University

K. Aniol

University of Califorina
Boost from Mott Cross Section

E05-105 Kinematics

σ_{Mott} [μb/Sr] vs Q^2 [GeV/c]^2

- $E_{\text{beam}} = 3.6$ GeV
- $E_{\text{beam}} = 2.2$ GeV
- $E_{\text{beam}} = 4.4$ GeV
- $E_{\text{beam}} = 6.6$ GeV
- $E_{\text{beam}} = 8.8$ GeV
- $E_{\text{beam}} = 11.0$ GeV
Expected Results
Motivation

$^3\text{He}(e,e'n)$ and $^3\text{He}(e,e')$ data:
- Becker EPJA 6 (1999) 329 + FSI
- Becker EPJA 6 (1999) 329 no FSI
- Bermuth PLB 564 (2003) 199
- Meyerhoff PLB 327 (1994) 201
- Riordan PRL 105 (2010) 262302

$^d(e,e'n)$ and $d(e,e'n)$ data:
- Passchier PRL 82 (1999) 4988
- Eden PRC 50 (1994) R1749
- Herberg EPJA 5 (1999) 131
- Ostrick PRL 83 (1999) 276 + FSI
- Zhu PRL 87 (2001) 081801
- Madey PRL 91 (2003) 122002
- Glazier EPJA 24 (2005) 101

Fits:
- Galster NPB 32 (1971) 221
- Kelly PRC 70 (2004) 068202
Polarized 3He Target

- Improved figure of merit
 - Rb+K hybrid mixture cell
 - Narrow bandwidth lasers
- **Compact size**: No cryogenic support needed

$^3\text{He} \approx S \quad S \quad D$

$\sim 90\% \quad \sim 1.5\% \quad \sim 8\%$

Insert diagram with the following labels:

- Laser 795 nm
- Oven 230 °C
- Pumping Chamber
- 25 G Holding Field
- Target Chamber
- Beam: 40 cm
- $\Phi = 3^\circ$
- Rb-K-3He Spin Exchange

MIT and Jefferson Lab logos are present.
Planned 3He Target for 12-GeV Experiments

- Upgrade takes advantage improvements of hybrid spin exchange optical pumping and spectrally narrowed lasers

- This proposal takes advantage of the already planned factor of 8 improvement in polarized luminosity discussed in the and the Hall C approved A_1^n experiment
 - “Dual transfer tube” design for convection mixing of polarized gas
 - Additional diagnostics for direct measurement of 3He and alkali-vapor polarizations

- Goal: 60% target polarization with a beam current of 60 μA on a 60-cm long target
Current Status of EM Form Factors

\[\frac{G_E}{G_D} \quad \frac{G_P}{\mu_p} \]

\[Q^2 (\text{GeV}^2) \]

\[10^{-1} \quad 1 \quad 10 \]

\[10^{-1} \quad 1 \quad 10 \]

\[G_E^p \quad G_M^p \mu_p \quad G_D \]

\[Q^2 (\text{GeV}^2) \]

\[0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \]

\[G_E^p \quad G_M^p \mu_p \quad G_D \]

\[Q^2 (\text{GeV}^2) \]

\[0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \]