High-x Physics in Hall C with 12 GeV

Experiment	Targets	Lengths (cm)	Currents (µA)	Angles (°)	Energies (GeV)
 9 approved Hall 	C experiments fro	m _. P _. A	1 <i>C</i> 3(0 + PA	C32
→ Many of them p	oush into the high-x, Di	IS re	gion	5.5-13	2.8-10.9
R=L/T (E12-06-104)	LH2, LD2, Al	10	50	5.5-13	6.6-11.0
x>1 (E12-06-105)	2, He3, He4, Be(2%), C(1.5%), Cu(6%), Au(6%) 4	20-80	8-26	1.5-11.0
• SIDIS, GPDs, D	VCS and other "clo	isses	" ∙0†	5.52-22.73	8.8, 11.0
experiments are	e highlighted in the	eir ov	vn	12.5, 30.0	11.0
forum/talks.	³ He polarized	40	5-30	11-20	11.0
PAC30 LOI					
GEp (LOI-06-103)	LH2	30	75	15.7-25	6.6-11.0
T will focus on t	wo particular expe	nima	ntc.	10.06-38.474	6.0, 10.9
1 Hotodishitegration HDZ (HOT-00-100)	1112, 1112	10		12.30-20.03	2.268-6.667
$\rightarrow A_1^n$ (precision m	easurement focusing o	$n g_1 f$	or₅th	ne neuti	ron)
PAC32 Approved and conditionally	easurement focusing o	$n g_2^4$	or"th	ne neuti	ron)
Pion Factorization (E12-07-103)	LH2, LD2, Al			5.5-23.05	3.7-10.9
DIS-parity (E12-07-102)	LH2,LD2	20,40	10,85	13.5	6.6,11
J/psi production near threshold (E12-07-106)	LH2,LD2,Be,C,Al,Cu,Ag,Au	10% RL		8.0-19.1	11,10.2,8.8

^{*} Table from http://www.jlab.org/~hornt/hallc_12gev/shms_experiments.html (T. Horn)

Why A_1^n and d_2^n ?

- JLab is uniquely positioned to break new ground
 - → 12 GeV upgrade allows us to access the important high-x region with unprecedented precision
 - High luminosities (Unprecedented statistics)
 - Well understood, high precision detector packages that can handle the rates (Excellent systematics)
 - → JLab has the best polarized target groups in the world Polarized neutron target (3He)
- Polarized ³He as a polarized neutron target has made a whole class of precision tests possible!
 - → Probing spin in the neutron is one of the most interesting frontiers at JLab.

Measurement of A_1^n at 12 GeV

G.D. Cates (UVa), J.P. Chen (JLab), Z.-E. Meziani (Temple U), X. Zheng (UVa)

- 1988-1989: "The Proton Spin Crisis"
- Current understanding of the nucleon spin:
- $\frac{1}{2} = S_Z^N = S_Z^q + L_Z^q + J_Z^G \quad \text{(the spin "sum rule")}$
 - → Quark spin contributes about (20~30)% to the nucleon spin
 - ightharpoonup Little data exist on L_Z^q and J_Z^G .
- Understanding spin structure of the nucleon requires measurements of all three components, and to answer the question:
 - "CAN WE UNDERSTAND THESE DATA from the first principles in QCD?"
- However, the region where we can test QCD is limited due to the complication in QCD calculations
 - \rightarrow moments, structure functions at high x.

Why Large x?

- At large x, valence quarks dominate, easier to model;
- Smaller contribution from $q-\overline{q}$ sea and gluons
 - → a relatively clean region to study the nucleon structure;
- To understand the nucleon spin, high-x is a good place to start.

Cross sections and Structure Functions

Unpolarized case:

$$\frac{d^{2}\sigma}{d\Omega dE'} = \frac{\alpha^{2}}{4E^{2}\sin^{4}\frac{\theta}{2}} \left(\frac{2}{M} F_{1}(x, Q^{2}) \sin^{2}\frac{\theta}{2} + \frac{1}{\nu} F_{2}(x, Q^{2}) \cos^{2}\frac{\theta}{2} \right)$$

Polarized beam + target:

$$\frac{d^2\sigma}{dE'd\Omega}(\downarrow\uparrow\uparrow -\uparrow\uparrow\uparrow) = \frac{4\alpha^2}{MQ^2}\frac{E'}{\nu E}\left[(E+E'\cos\theta)\mathbf{g_1}(\mathbf{x},\mathbf{Q^2}) - \frac{Q^2}{\nu}\mathbf{g_2}(\mathbf{x},\mathbf{Q^2})\right] = \Delta\sigma_{\parallel}$$

$$\frac{d^2\sigma}{dE'd\Omega}(\downarrow \Rightarrow -\uparrow \Rightarrow) = \frac{4\alpha^2 \sin \theta}{MQ^2} \frac{E'^2}{\nu^2 E} \left[\nu g_1(\mathbf{x}, \mathbf{Q^2}) + 2E g_2(\mathbf{x}, \mathbf{Q^2}) \right] = \Delta \sigma_{\perp}$$

 Q^2 = 4-momentum transfer squared of the virtual photon.

 \mathbf{v} = energy transfer.

 θ = scattering angle.

$$x = \frac{Q^2}{2M\nu}$$
 fraction of nucleon momentum carried by the struck quark.

Virtual Photon Asymmetries

Virtual photon $A_1 = \frac{\sigma_{1/2} - \sigma_{3/2}}{\sigma_{1/2} + \sigma_{3/2}}$ asymmetry: Virtual

$$A_{1} = \frac{\sigma_{1/2} - \sigma_{3/2}}{\sigma_{1/2} + \sigma_{3/2}}$$

target spin photon spin target spin

$$A_1 = \frac{g_1 - \gamma^2 g_2}{F_1} \approx \frac{g_1}{F_2} \quad \text{at large } Q^2 \qquad \qquad \gamma^2 = \frac{4 M^2 x^2}{Q^2}$$

• A, nearly independent of Q^2 (g, and F, follow the same LO and NLO evolutions, but not in higher orders or higher twist effects).

Neutron Structure as $x_{Bi} \rightarrow 1$

$$\begin{vmatrix} \mathbf{n}^{\uparrow} \rangle = \frac{1}{\sqrt{2}} | \mathbf{d}^{\uparrow} (ud)_{00} \rangle + \frac{1}{\sqrt{18}} | \mathbf{d}^{\uparrow} (ud)_{10} \rangle - \frac{1}{3} | \mathbf{d}^{\downarrow} (ud)_{11} \rangle$$
$$-\frac{1}{3} | \mathbf{u}^{\uparrow} (dd)_{10} \rangle - \frac{\sqrt{2}}{3} | \mathbf{u}^{\downarrow} (dd)_{11} \rangle$$

Model	F ₂ ⁿ /F ₂ ^p	d/u	Δ d/d	Δ u/u	A ₁ ⁿ	A ₁ ^p
SU(6) = SU(3) flavor \oplus SU(2) spin	2/3	1/2	2/3	-1/3	0	5/9
Valence Quark + Hyperfine	1/4	0	1	-1/3	1	1
pQCD + HHC	3/7	1/5	1	1	1	1

Neutron Structure as $x_{Bj} \rightarrow 1$

$$\left| \mathbf{n}^{\uparrow} \right\rangle = \frac{1}{\sqrt{2}} \left| \mathbf{d}^{\uparrow} (ud)_{00} \right\rangle + \frac{1}{\sqrt{18}} \left| \mathbf{d}^{\uparrow} (ud)_{10} \right\rangle - \frac{1}{3} \left| \mathbf{d}^{\downarrow} (ud)_{11} \right\rangle$$
$$- \frac{1}{3} \left| \mathbf{u}^{\uparrow} (dd)_{10} \right\rangle - \frac{\sqrt{2}}{3} \left| \mathbf{u}^{\downarrow} (dd)_{11} \right\rangle$$

Model	F ₂ ⁿ /F ₂ ^p	d/u	Δ d/d	Δ u/u	A ₁ ⁿ	A ₁ ^p
SU(6) = SU(3) flavor \oplus SU(2) spin	2/3	1/2	2/3	-1/3	0	5/9
Valence Quark + Hyperfine	1/4	0	1	-1/3	1	1
pQCD + HHC	3/7	1/5	1	1	1	1

- Nucleon spin carried by 3 constituent quarks alone, two in an S=0 or S=1 diquark state
- Exact SU(6) symmetry is (obviously) a naïve model:
 - \rightarrow Fails badly at low-x where sea-quarks dominate ($A_1^p(x=0)$ is small)
 - \Rightarrow R^{np}(x=0) ~ 1 then falls below 0.5 at high-x (SLAC, Fermilab, CERN)

Failure at high-x points to a fundamental problem with the wavefunction

Neutron Structure as $x_{Bj} \rightarrow 1$

$$\begin{vmatrix} \mathbf{n}^{\uparrow} \rangle = \boxed{\frac{1}{\sqrt{2}}} \begin{vmatrix} \mathbf{d}^{\uparrow} (ud)_{00} \rangle + \frac{1}{\sqrt{18}} \begin{vmatrix} \mathbf{d}^{\uparrow} (ud)_{10} \rangle - \frac{1}{3} \begin{vmatrix} \mathbf{d}^{\downarrow} (ud)_{11} \rangle \\ -\frac{1}{3} \begin{vmatrix} \mathbf{u}^{\uparrow} (dd)_{10} \rangle - \frac{\sqrt{2}}{3} \begin{vmatrix} \mathbf{u}^{\downarrow} (dd)_{11} \rangle \end{vmatrix}$$

Model		F ₂ ⁿ /F ₂ ^p	d/u	Δ d/d	Δ u/u	A_1^n	A ₁ ^p
SU(6) = SU(3) flavor	⊕ SU(2) spin	2/3	1/2	2/3	-1/3	0	5/9
Valence Quark + Hypo	erfine	1/4	0	1	-1/3	1	1
pQCD + HHC		3/7	1/5	1	1	1	1

- Break the SU(6) symmetry through a 1-gluon exchange interaction
 - ⇒ explains suppression of R^{np}, and the 300 MeV mass shift of the Delta
- Spin-Spin hyperfine interaction involving the S=0 diquark pair
 - \rightarrow lowers its energy and enhances its high-x contribution (driving $A_1 \rightarrow 1$ as $x \rightarrow 1$)
- Relativistic CQM allows non-zero quark OAM --> ~25% of nucleon spin

Neutron Structure as $x_{Bj} \rightarrow 1$

$$\begin{vmatrix} \mathbf{n}^{\uparrow} \rangle = \frac{1}{\sqrt{2}} \begin{vmatrix} \mathbf{d}^{\uparrow} (ud)_{00} \rangle + \frac{1}{\sqrt{18}} \begin{vmatrix} \mathbf{d}^{\uparrow} (ud)_{10} \rangle - \frac{1}{3} \begin{vmatrix} \mathbf{d}^{\downarrow} (ud)_{11} \rangle \\ -\frac{1}{3} \begin{vmatrix} \mathbf{u}^{\uparrow} (dd)_{10} \rangle - \frac{\sqrt{2}}{3} \begin{vmatrix} \mathbf{u}^{\downarrow} (dd)_{11} \rangle \end{vmatrix}$$

Model	F ₂ ⁿ /F ₂ ^p	d/u	Δ d/d	Δ u/u	A_1^n	A ₁ ^p
$SU(6) = SU(3)$ flavor $\oplus SU(2)$ spin	2/3	1/2	2/3	-1/3	0	5/9
Valence Quark Hyperfine	1/4	0	1	-1/3	1	1
pQCD + Hadron Helicity Conservation	3/7	1/5	1	1	1	1

- At x=1, the scattering is from high-energy quark --> can treat interaction perturbatively
 - → "leading order" pQCD
- quark-gluon interactions suppress S=1, S,=1 pieces of the wavefunction
- HHC: assume no quark OAM --> struck quark must carry same spin as nucleon

World data for A_1^n and $\Delta q/q$

- K. Abe et al., PRL 79,26(1997),PLB 405,180(1997);
- K. Ackerstaff et al., PLB 404, 383 (1997);
- K. Ackerstaff et al., PLB 464, 123 (1999);
- X. Zheng et al., PRL 92, 012004 (2004);

Figures from PRC 70, 065207 (2004)

An Experimental Design

- 11 GeV polarized e beam, P_{beam} = 80%
 - $\rightarrow \Delta P_b/P_b = 2\%$ (Compton, Moller)
- Polarized ³He target,
 - → hybrid pumping (K + Rb)
 - ⇒ 40 cm, 14 atm @ 50°C, P_{Targ} > 50% ($\Delta P_{T}/P_{T}$ = 3%)
 - (E02-013 has achieved 55% in beam)

- HMS+SHMS to detect e'
 - \rightarrow measure both A_{\parallel} and A_{\perp}

SHMS spectrometer:

- ◆ P = 2 11 GeV/c.
- ◆ ΔP/P=(-10%, 22%)
- ♦ $\Delta\Omega$ = 4.5 msr
- $\Delta y = \pm 15$ cm

HMS spectrometer

- ◆ P_{max}=7.5 GeV/c,
- ◆ ∆P/P=(-9%, 9%)
- ♦ ∆W= 8.0 msr
- Δy=±5 cm

Projected A₁ⁿ Data at 12 GeV in Hall C

To extract $\Delta q/q$ — need d/u (BONUS, 3 He/ 3 H, PVDIS) and $g_{1}{}^{p}/F_{1}{}^{p}$ (fit or projected 12 GeV data from Hall B)

Complimentary to E12-06-122 in Hall A

A₁ⁿ Summary

- A_1^n will be measured up to x = 0.77
 - \rightarrow wide Q² coverage (3-10 GeV²);
- Require: pol ³He target in Hall C + SHMS + HMS;
- Complimentary to "A₁" using BigBite in Hall A";
- Beam time request: 53 days total
- Provide important data in the unexplored large x region:
 - → Improve world polarized PDF fits;
 - → Study Q² dependence;
 - → Test pQCD/HHC and quark OAM in a "deeper" valence quark region
- Combine with (planned) proton spin and d/u data, extract $\Delta q/q$, test whether $\Delta d/d$ turns positive as HHC predicted.

Moving on to d₂ⁿ...

- 1988-1989: "The Proton Spin Crisis"
- Current understanding of the nucleon spin:
- $\frac{1}{2} = S_Z^N = S_Z^q + L_Z^q + J_Z^G \quad \text{(the spin "sum rule")}$
 - → Quark spin contributes about (20~30)% to the nucleon spin
 - → Little data exist on L_7^q and J_7^G .
- Understanding spin structure of the nucleon requires measurements of all three components, and to answer the question:
 - "CAN WE UNDERSTAND THESE DATA from the first principles in QCD?"
- However, the region where we can test QCD is limited due to the complication in QCD calculations
 - \rightarrow moments, structure functions at high x.

g, and Quark-Gluon Correlations

QCD allows the helicity exchange to occur in two principle ways

Carry one unit of orbital angular momentum

Couple to a gluon

$$g_2(x,Q^2) = g_2^{WW}(x,Q^2) + \bar{g}_2(x,Q^2)$$

a twist-2 term (Wandzura & Wilczek, 1977):

$$g_2^{WW}(x,Q^2) = -g_1(x,Q^2) + \int_x^1 g_1(y,Q^2) \frac{dy}{y}$$

a twist-3 term with a suppressed twist-2 piece (Cortes, Pire & Ralston, 92):

$$\overline{g}_2(x,Q^2) = -\int_x^1 \frac{\partial}{\partial y} \left(\frac{m_q}{M} h_T(y,Q^2) + \xi(y,Q^2) \right) \frac{dy}{y}$$
 transversity quark-gluon corre

Hall C Summer Meeting

Moments of Structure Functions

$$\Gamma_1(Q^2) = \int_0^1 g_1(x,Q^2) \ dx = \mu_2 \ + \ \frac{\mu_4}{Q^2} \ + \ \frac{\mu_6}{Q^4} \ + \ \cdots$$
 leading twist higher twist

$$\mu_2^{p,n}(Q^2) = (\pm \frac{1}{12} \mathbf{g_A} + \frac{1}{36} \mathbf{a_8}) + \frac{1}{9} \Delta \Sigma + \mathsf{pQCD} \text{ corrections}$$

 $g_A=1.257$ and $a_8=0.579$ are the triplet and octet axial charge, respectively $\Delta\Sigma$ = singlet axial charge

(Extracted from neutron and hyperon weak decay measurements)

$$g_{A} = \Delta u - \Delta d$$

$$a_{8} = \Delta u + \Delta d - 2\Delta s$$

$$\Delta \Sigma = \Delta u + \Delta d + \Delta s$$

pQCD radiative corrections

Moments of Structure Functions (continued)

$$\mu_4(Q^2) = \frac{M^2}{9} \left[a_2(Q^2) + 4 d_2(Q^2) + 4 f_2(Q^2) \right]$$
 Twist - 2 Twist - 3 Twist - 4 (TMC)

where a_2 , d_2 and f_2 are higher moments of g_1 and g_2

e.g.
$$\mathbf{d_2}(Q^2) = \int_0^1 x^2 [2g_1(x,Q^2) + 3g_2(x,Q^2)] dx = 3\int_0^1 x^2 \overline{g_2}(x,Q^2) dx$$

$$\mathbf{a_2}(Q^2) = \int_0^1 x^2 g_1(x, Q^2) dx$$

- To extract f_2 , d_2 needs to be determined first.
- Both d_2 and f_2 are required to determine the color polarizabilities

Color "polarizabilities"

How does the gluon field respond when a nucleon is polarized?

Define color magnetic and electric polarizabilities (in nucleon rest frame):

$$\chi_{B,E} 2M^2 \vec{S} \; = \langle PS | \vec{O}_{B,E} | PS \rangle$$
 where $\vec{O}_B = \psi^\dagger g \vec{B} \psi$
$$\vec{O}_E = \psi^\dagger \vec{\alpha} \times g \vec{E} \psi$$

$$\chi_E^n = (4d_2^n + 2f_2^n)/3$$
$$\chi_B^n = (4d_2^n - f_2^n)/3$$

 χ_E and χ_B represent the response of the color \vec{B} & \vec{E} fields to the nucleon polarization

World Data on on g_2^n

However, Q² values for these data range from 0.1 - 15 GeV²

World Data on \bar{d}_2

(nucleon elastic contribution suppressed)

Model evaluations of d_2

Precision measurement of g_2^n and d_2^n in Hall C

W. Korsch (U. of Kentucky), Z.-E. Meziani (Temple U.), B. Sawatzky (Temple U.), T. Averett (W&M)

• An Experiment in Hall C:

- → A polarized electron beam of 11.0 GeV and polarized ³He target
- Measure $\Delta \sigma_{\perp} = \sigma^{\downarrow \Rightarrow} \sigma^{\uparrow \Rightarrow}$, $\Delta \sigma_{||} = \sigma^{\downarrow \uparrow} \sigma^{\uparrow \uparrow}$ for ${}^3\vec{\mathrm{He}}(\vec{e},e')$ reaction using both the SHMS and HMS running in parallel for 3 kinematic settings each

SHMS: $(p_0 = 8.0 \text{ GeV/c}, \theta = 11.0^\circ), (p_0 = 7.0 \text{ GeV/c}, \theta = 13.3^\circ), (p_0 = 6.3 \text{ GeV/c}, \theta = 15.5^\circ)$

 $^{\mbox{\tiny HMS}}$: (p₀ = 4.2 GeV/c, θ = 13.5°), (p₀ = 5.0 GeV/c, θ = 16.4°), (p₀ = 3.4 GeV/c, θ = 20.0°)

• Determine d_2^n and g_2^n using the relations:

$$\tilde{d}_{2} = x^{2}(2g_{1} + 3g_{2}) = \frac{MQ^{2}\nu}{8\alpha_{e}^{2}} \frac{E}{E'} \frac{x^{2}(4 - 3y)}{(E + E')} \left[\Delta \sigma_{\parallel} + \left(\frac{4 - y}{(1 - y)(4 - 3y)\sin\theta_{e}} - \cot\theta_{e} \right) \Delta \sigma_{\perp} \right]$$

$$g_2 = \frac{MQ^2\nu^2}{4\alpha_e^2} \frac{1}{2E'(E+E')} \left[-\Delta \boldsymbol{\sigma}_{\parallel} + \frac{E+E'\cos\theta_e}{E'\sin\theta_e} \Delta \boldsymbol{\sigma}_{\perp} \right]$$

where $\Delta \sigma_{\parallel} = \sigma^{\downarrow \uparrow \uparrow} - \sigma^{\uparrow \uparrow \uparrow}$, $\Delta \sigma_{\perp} = \sigma^{\downarrow \Rightarrow} - \sigma^{\uparrow \Rightarrow}$ and $y = \nu/E$.

 $I_{beam} = 10 \mu A$

 $P_{beam} = 0.8$

 $P_{targ} = 0.5$

Floor layout for Hall C

Hall C

- One beam energy
 - → 11 GeV
- Each arm measures
 a total cross section
 independent of the
 other arm.
- Experiment split into three pairs of 200 hour runs with spectrometer motion in between.
- SHMS collects data at Θ = 11°, 13.3° and 15.5° for 200 hrs each
 - data from each setting divided into 4 bins
- HMS collects data at Θ = 13.5°, 16.4° and 20.0° for 200 hrs each

d_2^n Kinematics for Hall C (cont...)

Projected $x^2g_2(x,Q^2)$ results from Hall C

Projected points are vertically offset from zero along lines that reflect different (roughly) constant Q² values from 2.5—6 GeV².

- g_2 for ³He is extracted directly from L and T spin-dependent cross sections measured within the same experiment.
- Strength of SHMS/HMS:
 nearly constant Q² (but less coverage for x < 0.3)

Expected Error on d_2^n

- The proposed measurements are at $constant Q^2$
- The dominant E155x point includes data evolved down from as far as 15 GeV²!

Combined Kinematics from both Halls

Q² evolution of d₂ (both Halls)

Q² evolution of d₂ (both Halls)

d_2 and g_2 evolution (both Halls)

$d_2^n \& g_2^n$ Summary

- A Hall C measurement using baseline equipment + polarized ³He target
 - \rightarrow map out g_2 with unprecedented x, Q^2 coverage and precision
 - \rightarrow precisely measure the neutron $\frac{d_2^n}{d_2^n}$ at $Q^2 = 3$, 4, and 5 GeV².
 - \rightarrow first look at Q² evolution of $g_2^n(x)$ for x > 0.5
- Provide a rigorous test for theory (lattice QCD).
 - \rightarrow we can achieve a statistical uncertainty of $\Delta d_2^n \sim 5 \times 10^{-4}$
 - measurements done at constant Q2 (never been done before!)
- Significantly improve our knowledge of $g_2^n(x)$
 - \rightarrow vastly improve the available data for \times > 0.2, all with better precision
 - \rightarrow (Hall A proposal would extend Q^2 coverage for x > 0.5 up to 9 GeV²)

Final Thoughts

- A_1^n will be measured up to x=0.77 over wide Q^2 coverage (3-10 GeV²);
- Provide important data in the unexplored large x region:
 - → Improve world polarized PDF fits;
 - \rightarrow Study Q² dependence of A_1^n
 - Test pQCD/HHC and quark OAM in a "deeper" valence quark region
- Combine with (planned) proton spin and d/u data, extract $\Delta q/q$,
 - \rightarrow test whether $\Delta d/d$ turns positive as HHC predicted.
- $d_2^n(Q^2)$ will be measured for $Q^2 = 3$, 4, and 5 GeV².
 - \rightarrow map out g_2^n with unprecedented x, Q^2 coverage and precision
 - \rightarrow first look at Q² evolution of $g_2''(x)$ for x > 0.5
- Provide a rigorous test for theory (lattice QCD).
 - \rightarrow we can achieve a statistical uncertainty of $\Delta d_2^n \sim 5 \times 10^{-4}$
 - measurements done at constant Q² (never been done before!)
- A lot of exciting new precision data will be coming out of JLab early in the 12 GeV program!

Backup Slides

Systematic Error Contributions to g_2^n and d_2^n

Item description	Subitem description	Relative uncertainty
Target polarization		1.5 %
Beam polarization		3 %
Asymmetry (raw)		
Cross section (raw)	 ◆ Target spin direction (0.1°) ◆ Beam charge asymmetry 	$<5\times10^{-4}\\<50~\mathrm{ppm}$
0.000 000.000 (1.011)		
	PID efficiencyBackground Rejection efficiency	< 1 % $\approx 1 \%$
	Beam charge Beam position	< 1 % < 1 %
	Beam positionAcceptance cut	< 1 % 2-3 %
	Target density	< 2%
	Nitrogen dilution	< 1%
	Dead time	<1%
	• Finite Acceptance cut	<1%
Radiative corrections		≤ 5 %
From ³ He to Neutron correction		5 %
Total systematic uncertainty (for both $g_2^n(x, Q^2)$) and $d_2(Q^2)$)	≤ 10 %
Estimate of contributions to d_2 from unmeasured region	$\int_{0.003}^{0.23} \tilde{d}_2^n dx$	4.8×10^{-4}
Projected absolute statistical uncertainty on d	2	$\Delta d_2 \approx 5 \times 10^{-4}$
Projected absolute systematic uncertainty on d (assuming $d_2 = 5 \times 10^{-3}$)	, 2	$\Delta d_2 \approx 5 \times 10^{-4}$

- Systematics comparable for Halls A & C
- Radiative correction uncertainty cross-checked with E01-012 (Spin Duality) experiment
 - → worst case: 4.4%
- Pion rejection ratio of ~10000:1 should be achievable with standard SHMS/HMS detectors.

The proposal for Hall A and BigBite

- A 6.6 and 8.8 GeV polarized electron beam scattering off a polarized ³He target
- Measure unpolarized cross section for ${}^3\vec{\mathrm{He}}(\vec{e},e')$ reaction $\sigma_0^{^3\mathrm{He}}$ in conjunction with the parallel asymmetry $A_{\parallel}^{^3\mathrm{He}}$ and the transverse asymmetry $A_{\perp}^{^3\mathrm{He}}$ for 0.2 < x < 0.9 with 2.5 < Q² < 9 GeV².
 - → Asymmetries measured by BigBite for two kinematic settings:

$$E_{\text{beam}} = 6.6 \text{ GeV and } \theta = 40^{\circ}, \quad E_{\text{beam}} = 8.8 \text{ GeV and } \theta = 30^{\circ}$$

- → Absolute cross sections measured simultaneously by L-HRS
- Determine $\frac{d_n}{d_n}$ and $\frac{g_n}{d_n}$ using the relations

$$\tilde{d}_{2}(x,Q^{2}) = x^{2}[2g_{1}(x,Q^{2}) + 3g_{2}(x,Q^{2})]
= \frac{MQ^{2}}{4\alpha^{2}} \frac{x^{2}y^{2}}{(1-y)(2-y)} \sigma_{0} \left[\left(3\frac{1+(1-y)\cos\theta}{(1-y)\sin\theta} + \frac{4}{y}\tan\frac{\theta}{2} \right) A_{\perp} + \left(\frac{4}{y} - 3 \right) A_{\parallel} \right]$$

$$g_2 = \frac{MQ^2}{4\alpha^2} \frac{y^2}{2(1-y)(2-y)} 2\sigma_0 \left[-A_{\parallel} + \frac{1+(1-y)\cos\theta}{(1-y)\sin\theta} A_{\perp} \right]$$

where,

$$A_{\perp} = \frac{\sigma^{\downarrow \Rightarrow} - \sigma^{\uparrow \Rightarrow}}{2\sigma_{0}} \qquad A_{\perp}^{3He} = \frac{\Delta_{\perp}}{P_{b}P_{t}\cos\phi} \qquad A_{\parallel}^{3He} = \frac{\Delta_{\parallel}}{P_{b}P_{t}}$$

$$A_{\parallel} = \frac{\sigma^{\downarrow \uparrow \uparrow} - \sigma^{\uparrow \uparrow \uparrow}}{2\sigma_{0}} \qquad \Delta_{\perp} = \frac{(N^{\uparrow \Rightarrow} - N^{\uparrow \Rightarrow})}{(N^{\uparrow \Rightarrow} + N^{\uparrow \Rightarrow})} \qquad \Delta_{\parallel} = \frac{(N^{\downarrow \uparrow \uparrow} - N^{\uparrow \uparrow \uparrow})}{(N^{\downarrow \uparrow \uparrow} + N^{\uparrow \uparrow \uparrow})}$$

 ϕ = angle between scattering plane and transverse target pol.

 $I_{beam} = 10 \mu A$ $P_{beam} = 0.8$ $P_{targ} = 0.5$

Floor layout for Hall A

Hall A

- Two beam energies
 - → 6.6, 8.8 GeV
- 200 hours for6.6 GeV data set
 - → 175 hrs transverse
 - ⇒ 25 hrs parallel
- 400 hours for
 8.8 GeV data set
 - → 360 hrs transverse
 - → 40 hrs parallel
- HRS used to measure σ_0 at 10 momentum settings for each beam energy.
 - \rightarrow will also reverse the field to monitor π^{-}/π^{+} and e^{-}/e^{+} asymmetries
- ullet BigBite measures $A_\parallel^{^3{
 m He}}$ and $A_\perp^{^3{
 m He}}$ with single configuration at each beam energy.

BigBite in Hall A

- GeN electron detector package (upper left) will modified by increasing the MWDC spacing to improve the high momentum position resolution (lower left).
- The Gas Cerenkov (currently under construction for E06-014) will be used to suppress pion backgrounds.

Kinematics for Hall A (cont...)

Projected $x^2g_2(x,Q^2)$ results from Hall A

- g_2 for ³He is extracted directly from L and T spin-dependent cross sections measured within the same experiment.
- Strength of BigBite: large x coverage per setting (but large Q² variation)

Measuring the Neutron g_2 and d_2 at 12 GeV

PR12-06-120 (Hall A) • PR12-06-121 (Hall C)

- Goal:
 - ⇒ Clearly map out Q^2 evolution of neutron g_2 for x > 0.5
 - ⇒ Determine the neutron d_2 at $\langle Q^2 \rangle = 3$, 4, 5 GeV²
- An Experiment in Hall A: (approved by the Hall A Collaboration)
 - → A polarized electron beam of 6.6, 8.8 GeV and polarized ³He target
 - Measure unpolarized cross section for ${}^3\vec{\mathrm{He}}(\vec{e},e')$ reaction $\sigma_0^{^3\mathrm{He}}$ in conjunction with the transverse asymmetry $A_\perp^{^3\mathrm{He}}$ and the parallel asymmetry $A_\parallel^{^3\mathrm{He}}$ for 0.2 < x < 0.9 with 2.5 < Q² < 9 GeV².
- An Experiment in Hall C:
 - → A polarized electron beam of 11.0 GeV and polarized ³He target
 - Measure $\Delta \sigma_{\perp} = \sigma^{\downarrow \Rightarrow} \sigma^{\uparrow \Rightarrow}$, $\Delta \sigma_{\parallel} = \sigma^{\downarrow \uparrow \uparrow} \sigma^{\uparrow \uparrow \uparrow}$ for ${}^{3}\vec{\mathrm{He}}(\vec{e}, e')$ reaction for 0.2 < x < 0.9 with 2 < Q² < 6 GeV².
 - Spokespeople:
 - → Hall A: T. Averett, J.P. Chen, W. Korsch, B. Sawatzky
 - → Hall C: T. Averett, W. Korsch, Z.E. Meziani, B. Sawatzky