JLab Hall-C Summer Workshop July 7, 2009

Lambda-Sigma Coupling Effect in the Neutron-Rich Lambda Hypernuclei in a Shell-Model Calculation

Atsushi UMEYA (RIKEN)

Toru HARADA (Osaka E.C. Univ.)

A. Umeya and T. Harada, Phys. Rev. C 79, 024315 (2009).T. Harada, A. Umeya, and Y. Hirabayashi, Phys. Rev. C 79, 014603 (2009).

Jul. 7, 2009

Table of contents

- Introduction
 - Neutron-rich hypernuclei
 - Λ - Σ coupling
 - Coherent Λ - Σ coupling
 - Production of neutron-rich Λ -hypernuclei
 - Purpose of this study
- Method
- Results
- Discussion
- Summary and conclusion

Neutron-rich hypernuclei

- A Λ hyperon plays a glue like role in nuclei beyond the neutron drip line, together with a strong ΛN - ΣN coupling, which might induce Σ -mixing in nuclei.
- The knowledge of behavior of hyperons in a neutron-excess environment significantly affects our understanding of neutron stars, because it makes the equation of state soften.

Λ- Σ coupling

A Λ -nuclear state in Λ -hypernuclei is able to convert a Σ -nuclear state by a ΛN - ΣN coupling interaction.

A Σ -mixing probability in a state of Λ -hypernuclei is few percent because Σ hyperon has a larger mass than a Λ hyperon by about 80 MeV.

 Σ -mixing \rightarrow the energy spacings of doublets

 \rightarrow the production of hypernuclei by the double charge exchange reactions

4

Coherent Λ - Σ coupling

- The splitting of the 1⁺ and 0⁺ states of ${}^{4}_{\Lambda}$ H and ${}^{4}_{\Lambda}$ He has long been recognized as a problem to describe simultaneously the binding energies of the *s*-shell hypernuclei with a central ΛN interaction. R. H. Dalitz *et al.*, NPB47 (1972) 109.
- Akaishi *et al.* suggested the importance of a coherent Λ - Σ coupling in the study of He Λ -hypernuclei. Khin Swe Myint *et al.*, FBS. Suppl. 12 (2000) 383.

Y. Akaishi et al., PRL84 (2000) 3539.

00.		$^{4}_{\Lambda}$ He	(unit in MeV)
0.0 ·	-1.24	-1.20 -1.21	-0.68 -0.70
1 0^+	-2.39	-1.52	-1.43
		$P_{\Sigma} = 0.7\%$	$P_{\Sigma} = 0.9\%$
	Exp.	SC97e(S)	SC97f(S)
	Akai	shi <i>et al.</i> , PRL 84 (2	000) 3539.

Coherent Λ - Σ coupling

- The splitting of the 1⁺ and 0⁺ states of ${}^{4}_{\Lambda}$ H and ${}^{4}_{\Lambda}$ He has long been recognized as a problem to describe simultaneously the binding energies of the *s*-shell hypernuclei with a central ΛN interaction. R. H. Dalitz *et al.*, NPB47 (1972) 109.
- Akaishi *et al.* suggested the importance of a coherent Λ - Σ coupling in the study of He Λ -hypernuclei. Khin Swe Myint *et al.*, FBS. Suppl. 12 (2000) 383.

Y. Akaishi et al., PRL84 (2000) 3539.

00 —		$^{4}_{\Lambda}$ He	(unit in MeV)
-1	24 -1.20	-1 21	-0.68 -0.70
1+	-1.52		-1.43
0^{+} -2	.39	-2.10	-2.18

 $P_{\Sigma} = 0.7\%$ $P_{\Sigma} = 0.9\%$

The problem might be solved by the Λ - Σ coupling which strongly affects the 0⁺ states of the A = 4 hypernuclei.

Jul. 7, 2009

Production of neutron-rich Λ **-hypernuclei**

Double Charge Exchange (DCX) Reactions $(K^-, \pi^+), (\pi^-, K^+)$

Double charge exchange reactions can reduce two protons from target nuclei, and suitable for productions of neutron-rich Λ -hypernuclei.

Production of neutron-rich Λ **-hypernuclei**

Double Charge Exchange (DCX) Reactions $(K^-, \pi^+), (\pi^-, K^+)$

Experimental attempts to produce neutron-rich A-hypernuclei KEK ⁹Be $(K^-, \pi^+)^9_{\Lambda}$ He, ¹²C $(K^-, \pi^+)^{12}_{\Lambda}$ Be, ¹⁶O $(K^-, \pi^+)^{16}_{\Lambda}$ C at rest. K. Kubota *et al.*, NPA602, 323 (1996). ¹⁰B $(\pi^-, K^+)^{10}_{\Lambda}$ Li at $p_{\pi} = 1.05$, 1.20 GeV/*c*. P. K. Saha *et al.*, PRL94, 052502 (2005). DAΦNE ⁶Li $(K^-, \pi^+)^6_{\Lambda}$ H, ⁷Li $(K^-, \pi^+)^7_{\Lambda}$ H at rest. M. Agnello *et al.*, PLB640, 145 (2006). J-PARC proposal P10 ⁶Li $(\pi^-, K^+)^6_{\Lambda}$ H, ⁹Be $(\pi^-, K^+)^9_{\Lambda}$ He at $p_{\pi} = 1.20$ GeV/*c*

Experiments in J-PARC K1.8 area Sep. 2009 -

- E03 Measurement of X-rays from Ξ -Atom (K^- , K^+)
- E05 Spectroscopic Study of Ξ -Hypernucleus ${}_{\Xi}^{12}$ Be, via the ${}^{12}C(K^-, K^+)$ Reaction (K^-, K^+)
- E07 Systematic Study of Double Strangeness System with an Emulsion-Counter Hybrid Method (K^-, K^+)
- E10 Production of Neutron-Rich A-Hypernuclei with the Double Charge-Exchange Reactions (π^-, K^+)
- E13 Gamma-ray spectroscopy of light hypernuclei (K^-, π^-)
- E19 High-resolution Search for Θ^+ Pentaquark in $\pi^- p \to K^- X$ Reactions (π^-, K^-)
- E22 Exclusive Study on the ΛN Weak Interaction in $A = 4 \Lambda$ -Hypernuclei (π^+, K^+)

Further experiments in the (π^-, K^+) reactions are also planned at J-PARC.

Experiments in J-PARC K1.8 area Sep. 2009 -

- E03 Measurement of *X*-rays from Ξ -Atom (K^- , K^+)
- E05 Spectroscopic Study of Ξ -Hypernucleus ${}_{\Xi}^{12}$ Be, via the ${}^{12}C(K^-, K^+)$ Reaction (K^-, K^+)
- E07 Systematic Study of Double Strangeness System with an Emulsion-Counter Hybrid Method (K^-, K^+)
- E10 Production of Neutron-Rich A-Hypernuclei with the Double Charge-Exchange Reactions (π^-, K^+)
- E13 Gamma-ray spectroscopy of light hypernuclei (K^-, π^-)
- E19 High-resolution Search for Θ^+ Pentaquark in $\pi^- p \to K^- X$ Reactions (π^-, K^-)
- E22 Exclusive Study on the ΛN Weak Interaction in $A = 4 \Lambda$ -Hypernuclei (π^+, K^+)

Further experiments in the (π^-, K^+) reactions are also planned at J-PARC.

A spectrum by (π^-, K^+) DCX reaction on a ¹⁰B target at 1.2 GeV/c ${}^{10}\mathrm{B}(\pi^-, K^+) {}^{10}_{\Lambda}\mathrm{Li}$ First successful measurement KEK-PS-E521 P. K. Saha et al., PRL94 (2005) 052502. 35.0 30.0 3.0Q^{25.0} 20.0 15.0 15.0 50 g.s 2.01.0**Cross Section:** $11.3 \pm 1.9 \text{ nb/sr}$ for $p_{\pi^{-}} = 1.20 \text{ GeV}/c$ $5.8 \pm 2.2 \text{ nb/sr}$ 5.0 g.s. for $p_{\pi^{-}} = 1.05 \text{ GeV}/c$ 0.02040 60 80 100120140 $-B_{\Lambda}$ [MeV]

The cross sections for productions by (π^-, K^+) reactions are about 1000 times smaller than those by (π^+, K^+) reactions.

Jul. 7, 2009

Double Charge Exchange Reaction

Two-step process

 $\pi^{-}p \to K^{0}\Lambda$ $K^{0}p \to K^{+}n$ $\pi^{-}p \to \pi^{0}n$ $\pi^{0}p \to K^{+}\Lambda$

One-step process

 $\pi^{-}p \to K^{+}\Sigma^{-}$ $\Sigma^{-}p \leftrightarrow \Lambda n$ $\Sigma^{-}\Lambda \text{ coupling}$

Jul. 7, 2009

Double Charge Exchange Reaction

Two-step process

 $\pi^{-}p \to K^{0}\Lambda$ $K^{0}p \to K^{+}n$ $\pi^{-}p \to \pi^{0}n$ $\pi^{0}p \to K^{+}\Lambda$

Theoretical calculation

with the distorted-wave impulse approximation (DWIA)

T. Yu. Tretyakova, D. E. Lanskoy, Phys. At. Nucl. 66 (2003) 1651.

 \rightarrow The two-step mechanism is dominant.

22 nb/sr for $p_{\pi^-} = 1.20 \text{ GeV}/c$ (Exp.: $11.3 \pm 1.9 \text{ nb/sr}$) 38 nb/sr for $p_{\pi^-} = 1.05 \text{ GeV}/c$ (Exp.: $5.8 \pm 2.2 \text{ nb/sr}$) The absolute values of the cross sections and their incident-momentum dependence given by the two-step processes are different from the experimental data.

Theoretical calculation by using the coupled-channel DWIA

T. Harada, A. Umeya, Y. Hirabayashi, PRC79, 014603 (2009).

for the first successful measurement of ¹⁰B (π^- , K^+) ¹⁰Li reaction KEK-PS-E521; P. K. Saha *et al.*, PRL94 (2005) 052502.

A spectrum by (π^-, K^+) DCX reaction at 1.2 GeV/*c*, $V_{\Sigma\Lambda} = 10$ MeV $(P_{\Sigma} = 0.57 \%)$

The values of W_{Σ} and $V_{\Sigma\Lambda}$ are phenomenologically determined by fitting to a spectral shape of the experimental data.

 W_{Σ} : a strength of the spreading imaginary potential

 \rightarrow complicated excited states for $^{10}_{\Lambda}$ Li

 $V_{\Sigma\Lambda}$: an effective strength of the ΛN - ΣN potential

Solid lines: One-step process with $-W_{\Sigma} = 10, 20, 30, 40, 50 \text{ MeV}$, Dashed line: Two-step process

The values of $-W_{\Sigma} = 20-30$ MeV enable the calcurated spectrum to reproduce substantially the experimental data, and are consistent with the alalysis of Σ^- production by the (π^-, K^+) reactions.

The contribution of the two-step processes in the continuum spectrum is rather small.

Theoretical calculation by using the coupled-channel DWIA

T. Harada, A. Umeya, Y. Hirabayashi, PRC79, 014603 (2009).

for the first successful measurement of ¹⁰B (π^- , K^+) ¹⁰Li reaction KEK-PS-E521; P. K. Saha *et al.*, PRL94 (2005) 052502.

A spectrum by (π^-, K^+) DCX reaction at 1.2 GeV/*c*, $-W_{\Sigma} = 20$ MeV

The values of W_{Σ} and $V_{\Sigma\Lambda}$ are phenomenologically determined by fitting to a spectral shape of the experimental data.

 W_{Σ} : a strength of the spreading imaginary potential

 \rightarrow complicated excited states for $^{10}_{\Lambda}$ Li

 $V_{\Sigma\Lambda}$: an effective strength of the ΛN - ΣN potential

Solid lines: One-step process with $V_{\Sigma\Lambda} = 4$, 8, 10, 11, 12 MeV $(P_{\Sigma} = 0.075, 0.30, 0.47, 0.57, 0.68 \%)$

The resultant spectrum can explain the magnitude of the recent experimental data. Σ^{-} -mixing probability in ${}^{10}_{\Lambda}$ Li is $P_{\Sigma} \sim 0.5 \% (V_{\Sigma\Lambda} = 10-12 \text{ MeV}).$ Approximate calculations of the integrated lab cross sections of $d\sigma/d\Omega$ for the ${}^{10}_{\Lambda}$ Li 2⁻ bound state with two-step and one-step processes in ${}^{10}B(\pi^-, K^+)$ reactions, compared with the experimental data

p_{π}	Two-step	One-step	Exp.
(GeV/c)	(nb/sr)	(nb/sr)	(nb/sr)
1.05	~ 1.6	2.4	5.8 ± 2.2
1.20	~ 1.2	5.4	11.3 ± 1.9

For the two-step mechanism in the DCX ${}^{10}B(\pi^-, K^+)$ reaction, we roughly estimated the integrated lab cross sections of $d\sigma/d\Omega$ for the ${}^{10}_{\Lambda}$ Li bound state with a harmonic oscillator model, adapting the eikonal treatment to the DWIA.

- The calculated value of $d\sigma/d\Omega$ at 1.20 GeV/c by the two-step mechanism is rather small (1-2 nb/sr) compared to that by the one-step one.
- The incident-momentum dependence of $d\sigma/d\Omega$ in the data is similar to that in the onestep mechanism.

The analysis of this reaction provides a reason to carefully examine wave functions involving Σ admixtures in ${}^{10}_{\Lambda}$ Li, as well as a mechanism of this reaction.

Purpose of the present shell-model study

To theoretically clarify the structure of the neutron-rich Lambda hypernuclei

We investigate the structure of the neutron-rich hypernucleus ${}^{10}_{\Lambda}$ Li, in microscopic shellmodel calculations considering the Λ - Σ coupling effect.

- Σ-mixing probabilities
- Energy shifts due to the Σ -mixing
- Effect of the ΣN interaction to the core-nuclear state
- Enhancement of the coupling strengths
- Relation to the β -transition properties of the nuclear core state

A state of Λ -hypernuclei

 $|(^{A}_{\Lambda}Z)\nu TJ\rangle$

A : mass number, Z : atomic number, T : isospin, J : angular momentum

v: quantum number to distinguish states with the same T and J

Hamiltonian in the configuration space for the Λ -hypernucleus involving a Λ - Σ coupling

$$\begin{split} H &= H_{\Lambda} + H_{\Sigma} + V_{\Lambda\Sigma} + V_{\Sigma\Lambda} \\ H_{\Lambda} : \text{Hamiltonian in the } \Lambda \text{ configuration space} \\ H_{\Sigma} : \text{Hamiltonian in the } \Sigma \text{ configuration space} \\ V_{\Lambda\Sigma}, V_{\Sigma\Lambda} : \text{two-body } \Lambda\text{-}\Sigma \text{ coupling interaction} \end{split}$$

We can write the state of H with T, J as

$$|(^{A}_{\Lambda}Z)\nu TJ\rangle = \sum_{\mu} C_{\nu,\mu} |\psi^{\Lambda}_{\mu}; TJ\rangle + \sum_{\mu'} D_{\nu,\mu'} |\psi^{\Sigma}_{\mu'}; TJ\rangle,$$

where

$$\begin{split} H_{\Lambda} | \psi^{\Lambda}_{\mu}; TJ \rangle &= E^{\Lambda}_{\mu} | \psi^{\Lambda}_{\mu}; TJ \rangle, \\ H_{\Sigma} | \psi^{\Sigma}_{\mu'}; TJ \rangle &= E^{\Sigma}_{\mu'} | \psi^{\Sigma}_{\mu'}; TJ \rangle. \end{split}$$

First-order perturbation

We treat $V_{\Lambda\Sigma}$ and $V_{\Sigma\Lambda}$ as perturbation because a Σ hyperon has a larger mass than a Λ hyperon by about 80 MeV.

$$\begin{split} {}^{(A}_{\Lambda}Z)\nu TJ\rangle &= \sum_{\mu} C_{\nu,\mu} |\psi^{\Lambda}_{\mu};TJ\rangle + \sum_{\mu'} D_{\nu,\mu'} |\psi^{\Sigma}_{\mu'};TJ\rangle, \\ C_{\nu,\mu} &= \delta_{\nu\mu}, \ \ D_{\nu,\mu'} = -\frac{\langle\psi^{\Lambda}_{\nu};TJ|V_{\Lambda\Sigma}|\psi^{\Sigma}_{\mu'};TJ\rangle}{E^{\Sigma}_{\mu'} - E^{\Lambda}_{\nu}} \end{split}$$

Matrix of Hamiltonian

Λ- nuclear	Λ - Σ coupling	A-nuclear zeroth- order	Λ-Σ coupling first-order	A-nuclear zeroth- order	Λ-Σ coupling first-orde
Λ - Σ coupling	Σ-nuclear	A-Σ coupling first-order	Σ-nuclear zeroth- order	A-Z coupling first-order	Σ-nuclear zeroth- order

First-order perturbation

We treat $V_{\Lambda\Sigma}$ and $V_{\Sigma\Lambda}$ as perturbation because a Σ hyperon has a larger mass than a Λ hyperon by about 80 MeV.

$$\begin{split} | {}^{A}_{\Lambda} Z \rangle v T J \rangle &= \sum_{\mu} C_{\nu,\mu} | \psi^{\Lambda}_{\mu}; T J \rangle + \sum_{\mu'} D_{\nu,\mu'} | \psi^{\Sigma}_{\mu'}; T J \rangle, \\ C_{\nu,\mu} &= \delta_{\nu\mu}, \quad D_{\nu,\mu'} = -\frac{\langle \psi^{\Lambda}_{\nu}; T J | V_{\Lambda\Sigma} | \psi^{\Sigma}_{\mu'}; T J \rangle}{E^{\Sigma}_{\mu'} - E^{\Lambda}_{\nu}} \end{split}$$

 $\rightarrow \Lambda - \Sigma \text{ coupling strength} \qquad |D_{\nu,\mu'}|^2 \text{ for each } \Sigma \text{ eigenstate } |\psi_{\mu'}^{\Sigma}; TJ \rangle$ $\rightarrow \Sigma \text{-mixing probability} \qquad P_{\Sigma} = \sum_{\mu'} |D_{\nu,\mu'}|^2$ $\rightarrow \text{ energy shift} \qquad \Delta E = \sum_{\mu'} \left(E_{\mu'}^{\Sigma} - E_{\nu}^{\Lambda} \right) |D_{\nu,\mu'}|^2$ $\rightarrow \text{ binding energy} \qquad E_{\nu}^{\Lambda} - \Delta E$

Jul. 7, 2009

Method

First-order perturbation

We treat $V_{\Lambda\Sigma}$ and $V_{\Sigma\Lambda}$ as perturbation because a Σ hyperon has a larger mass than a Λ hyperon by about 80 MeV.

$$\begin{split} |\langle^{A}_{\Lambda}Z\rangle\nu TJ\rangle &= \sum_{\mu} C_{\nu,\mu} |\psi^{\Lambda}_{\mu}; TJ\rangle + \sum_{\mu'} D_{\nu,\mu'} |\psi^{\Sigma}_{\mu'}; TJ\rangle, \\ C_{\nu,\mu} &= \delta_{\nu\mu}, \ D_{\nu,\mu'} = -\frac{\langle\psi^{\Lambda}_{\nu}; TJ|V_{\Lambda\Sigma} |\psi^{\Sigma}_{\mu'}; TJ\rangle}{E^{\Sigma}_{\mu'} - E^{\Lambda}_{\nu}} \end{split}$$

Energy shift due to the Λ - Σ coupling

Spectroscopic factor

 $\Lambda : A \land hyperon in a \land hypernucleus is described by the single-particle picture very well.$ $\leftarrow The \land N interaction is weak.$

 Σ : The nuclear configuration would change.

 \leftarrow The strong spin-isospin dependence in the ΣN interaction

Jul. 7, 2009

Spectroscopic factor for a hyperon-pickup from the hyperon-nuclear state $|\psi_{\mu}^{Y}; TJ\rangle$

$$S_{\mu}(\nu_{N}T_{N}J_{N}, j_{Y}) = \frac{\left| \langle \psi_{\mu}^{Y}; TJ || \boldsymbol{a}_{j_{Y}}^{\dagger} || (^{A-1}Z)\nu_{N}T_{N}J_{N} \rangle \right|^{2}}{(2T+1)(2J+1)}$$

 $|({}^{A-1}Z)v_N T_N J_N\rangle$: an eigenstate of the core nucleus $a_{j_Y}^{\dagger}$: a creation operator of a single-particle state of the hyperon in an orbit j_Y

A hyperon in the hypernucleus provides the single-particle nature.

→ The state $|\psi_{\mu}^{Y}; TJ\rangle$ is represented as a tensor product of a core-nuclear state $|(^{A-1}Z)v_{\text{core}}T_{N}J_{N}\rangle$ and a hyperon state $|j_{Y}\rangle$.

→ The spectroscopic factor satisfies $S_{\mu}(\nu_N T_N J_N, j_Y) = \delta_{\nu_N \nu_{\text{core}}}$.

Shell-Model Setup

Model space

- Four nucleons are inert in the ⁴He core and (A 5) valence nucleons move in the *p*-shell orbits.
- The Λ or Σ hyperon is assumed to be in the lowest $0s_{1/2}$ orbit.

In the case of ${}^{10}_{\Lambda}$ Li $(T = \frac{3}{2}, J^{\pi} = 1^{-})$, 9-nucleon states have $T_N = \frac{3}{2}, J_N^{\pi} = \frac{1}{2}^{-}, \frac{3}{2}^{-}$ for $|\psi_{\mu}^{\Lambda}; TJ\rangle$ and $T_N = \frac{1}{2}, \frac{3}{2}, \frac{5}{2}, J_N^{\pi} = \frac{1}{2}^{-}, \frac{3}{2}^{-}$ for $|\psi_{\mu'}^{\Sigma}; TJ\rangle$.

Shell-Model Setup

Shell model Hamiltonian

NN effective interaction : Cohen-Kurath (8-16) 2BME, NP73, 1 (1965). *YN* effective interaction :

 $\langle N\Lambda | V_{\Lambda} | N\Lambda \rangle_{TJ} \quad \langle N\Sigma | V_{\Sigma} | N\Sigma \rangle_{TJ} \quad \langle N\Lambda | V_{\Lambda\Sigma} | N\Sigma \rangle_{TJ} \quad \langle N\Sigma | V_{\Sigma\Lambda} | N\Lambda \rangle_{TJ}$ $V_{Y} = \underbrace{V_{0}(r)}_{\bar{V}} + \underbrace{V_{\sigma}(r)}_{\Delta} s_{N} \cdot s_{Y} + \underbrace{V_{LS}(r)}_{S_{+}} \ell \cdot s_{+} + \underbrace{V_{ALS}(r)}_{S_{-}} \ell \cdot s_{-} + \underbrace{V_{T}(r)}_{T} S_{12}$

	Isospin	$ar{V}$	Δ	S_+	S_{-}	Т
$\overline{V_{\Lambda}}$	T = 1/2	-1.2200	0.4300	-0.2025	0.1875	0.0300
V_{Σ}	T = 1/2	1.0100	-7.2150	-0.0010	0.0000	-0.3640
V_{Σ}^{-}	T = 3/2	-1.1070	2.2750	-0.2680	0.0000	0.1870
$V_{\Lambda\Sigma}^{-}, V_{\Sigma\Lambda}^{-}$	T = 1/2	1.4500	3.0400	-0.0850	0.0000	0.1570

 \leftarrow NSC97e, f(S)

 $V_{\Lambda}, V_{\Lambda\Sigma}, V_{\Sigma\Lambda}$: D. J. Millener, Lect. Notes Phys. 724 (2007) 31. V_{Σ} : D. J. Millener, private communication.

Numerical Results : Schematic energy levels

We assume that the difference between Λ and Σ threshold energies is $E({}^{9}\text{Li}_{g.s.} + \Sigma) - E({}^{9}\text{Li}_{g.s.} + \Lambda) = 80 \text{ MeV}.$ Thus the energy of the Σ ground state $|\psi_{g.s.}^{\Sigma}\rangle$ is calculated to be $E_{g.s.}^{\Sigma} - E_{g.s.}^{\Lambda} = 69.3 \text{ MeV},$ measured from that of the Λ ground state $|\psi_{g.s.}^{\Lambda}\rangle$.

Numerical Result : Σ -mixing probabilities and energy shifts

	$(J^{\pi} \ ;T)$	E [MeV]	$P_{\Sigma}[\%]$	$\Delta E_{\Lambda\Sigma}$ [MeV]	$\Delta E_{\Lambda\Sigma} [MeV]$ Millener's work	
$^{7}_{\Lambda}$ Li	$(\frac{1}{2}^+;0)$	0.000	0.098	0.085	0.078	
	$(\frac{3}{2}^+;0)$	0.612	0.017	0.015	0.004	0.070
$^{11}_{\Lambda}$ B	$(\frac{5}{2}^+;0)$	0.000	0.076	0.073	0.066	
	$(\frac{7}{2}^+;0)$	0.328	0.015	0.015	0.011	0.058
$^{10}_{\Lambda}$ Li	$(1^-;\frac{3}{2})$	0.000	0.345	0.280		
	$(2^-;\frac{3}{2})$	0.395	0.166	0.134		0.146

In order to check our shell-model calculation, we compare our numerical results for ${}^{7}_{\Lambda}Li$ and ${}^{11}_{\Lambda}B$ to the Millener's work. D. J. Millener, Lect. Notes Phys. 724, 31 (2007). We confirm that our calculations fully reproduce the Millener's results. The energy shift ΔE for ${}^{10}_{\Lambda}Li$ is about 3 times larger than that for ${}^{7}_{\Lambda}Li$ or ${}^{11}_{\Lambda}B$.

Numerical Results : Energy shifts and Σ **-mixng probabilities**

The energy spacings between the levels of ${}^{10}_{\Lambda}$ Li are very similar to those of 9 Li.

The ⁹Li core state is slightly changed by the addition of the Λ hyperon.

The Λ hyperon behaves as the single-particle motion in the nucleus because the ΛN interaction is rather weak.

JLab Hall-C Summer Workshop

The core nucleus is ⁹Be with T = 1/2, 3/2, 5/2 and $J^{\pi} = 1/2^{-}$, $3/2^{-}$.

The distributions of $S_{\Sigma^{-}}$ for excited states, (b) and (c), spread widely with the multi-configuration of ⁹Be^{*}. This implies that the Σ hyperon has the ability of largely changing the core-nuclear configuration.

A contribution of the Σ ground state $|\psi_{g.s.}^{\Sigma}\rangle$ to the Σ -mixing of the ground state of ${}^{10}_{\Lambda}$ Li is reduced to 0.002 %. The several Σ excited states in the $E_{\mu'}^{\Sigma} - E_{g.s.}^{\Lambda} \approx 80$ MeV region considerably contribute to the Σ -mixing. These contributions are coherently enhanced by the configuration mixing. \leftarrow the ΣN interaction It is shown that the nature of the Σ -nuclear states plays an important role in the Λ - Σ coupling.

When a Λ state in ${}^{10}_{\Lambda}$ Li converts to a Σ^- state by the Λ - Σ coupling interaction, the ⁹Li core state changes into the ⁹Be core state. In other words, the β^- -transition, ⁹Li \rightarrow ⁹Be, occurs in the core-nuclear state.

It is interesting to consider the β transitions between the core-nuclear components of Λ and Σ eigenstates to investigate the strength distribution of the Λ - Σ coupling.

 Λ - Σ coupling interaction

$$V_{\Sigma\Lambda} \simeq \underbrace{V_{\mathrm{F}}(r)\boldsymbol{t}_{N} \cdot \boldsymbol{\phi}_{\Sigma\Lambda}}_{V_{\Sigma\Lambda}^{\mathrm{F}}} + \underbrace{V_{\mathrm{GT}}(r)\left(\boldsymbol{\sigma}_{N} \cdot \boldsymbol{\sigma}_{\Sigma\Lambda}\right)\boldsymbol{t}_{N} \cdot \boldsymbol{\phi}_{\Sigma\Lambda}}_{V_{\Sigma\Lambda}^{\mathrm{GT}}},$$

The Fermi and Gamow-Teller components coherently contribute to the Λ - Σ coupling strengths.

Why is the energy shift for ${}^{10}_{\Lambda}$ Li about 3 times larger than that for ${}^{7}_{\Lambda}$ Li ? The enhancement of the Σ -mixing probabilities in neutron-rich Λ -hypernuclei is mainly due to the Fermi-type coupling interaction $V^{\rm F}_{\Sigma\Lambda}$.

Fermi-type coupling

We use the weak-coupling limit for simplicity.

 $\rightarrow \langle V_{\Sigma\Lambda}^{\mathrm{F}} \rangle = \langle T_{N} = T J_{N}, j_{\Sigma}; TJ || V_{\Sigma\Lambda}^{\mathrm{F}} || T_{N} = T J_{N}, j_{\Lambda}; TJ \rangle$

The Λ and Σ states must have the same core-nuclear state.

$$\downarrow \\ \langle V_{\Sigma\Lambda}^{\rm F} \rangle = \bar{V} \sqrt{\frac{4T (T+1)}{3}}, \\ |D_{\mu'}^{\rm F}|^2 \propto T (T+1) \\ \hline T \quad J^{\pi} \quad P_{\Sigma}^{\rm F} [\%] \quad P_{\Sigma}^{\rm GT} [\%] \quad P_{\Sigma}^{\rm F+GT} [\%] \quad P_{\Sigma} [\%] \\ \hline {}^{10}_{\Lambda} {\rm Li} \quad 3/2 \quad 1^- \quad 0.144 \quad 0.098 \quad 0.350 \quad 0.345 \\ \hline {}^{7}_{\Lambda} {\rm Li} \quad 0 \quad 1/2^+ \quad 0.000 \quad 0.088 \quad 0.088 \quad 0.098 \\ \hline \end{array}$$

Gamow-Teller-type coupling

In the Gamow-Teller transitions for ordinary nuclei, the Ikeda sum rule is well known as a model independent formula.

$$\sum B(\text{GT}-) - \sum B(\text{GT}+) = 3(N-Z)$$

K. Ikeda, S. Fujii, J. I. Fujita, Phys. Lett. 3, 271 (1963).

B(GT-): a strength of the Gamow-Teller β^- -transition, $|^{A}Z\rangle \rightarrow |^{A}Z+1\rangle$

B(GT+): a strength of the Gamow-Teller β^+ -transition, $|^{A}Z\rangle \rightarrow |^{A}Z-1\rangle$

In general, $\sum B(GT+)$ becomes smaller as neutron-excess grows larger.

$$N \gg Z \rightarrow \sum B(GT+) \approx 0$$

 $\rightarrow \sum B(GT-) \approx 3 (N-Z)$

The Gamow-Teller-type coupling is very important in Λ -hypernuclei with large neutron excess.

Energy shifts and Σ -mixing probabilities for ^{*A*}_{Δ}Li hypernuclei

A N	Т	J	P_{Σ}	ΔE	ΔE^{Mil}	$P^{ m F}_{\Sigma}$	$P^{ m GT}_{\Sigma}$	$P_{\Sigma}^{\mathrm{F+GT}}$
			[%]	[MeV]	[MeV]	[%]	[%]	[%]
6 2 1	/2	1-	0.022	0.019		0.028	0.060	0.017
7 3	0	$1/2^{+}$	0.098	0.085	0.078	0.000	0.088	0.088
8 4 1	/2	1-	0.172	0.139		0.032	0.066	0.168
95	1 3	$3/2^{+}$	0.211	0.172		0.077	0.099	0.206
10 6 3	5/2	1-	0.345	0.280		0.144	0.098	0.350
11 7	2	$1/2^{+}$	0.523	0.426		0.229	0.118	0.490
12 8 5	5/2	1-	0.653	0.522		0.326	0.143	0.645

Summary and conclusion

We have investigated the structure of the neutron-rich ${}^{10}_{\Lambda}$ Li hypernucleus, in shell-model calculations considering the Λ - Σ coupling in the perturbation theory. We have found that the Σ -mixing probabilities and the energy shifts of ${}^{10}_{\Lambda}$ Li eigenstates are coherently enhanced by the Λ - Σ coupling configurations in the neutron-rich nucleus. We have argued the effects of the Λ - Σ coupling interaction in terms of the β -transitions for the core-nuclear states. The reasons why the Σ -mixing probabilities are enhanced are summarized as follows:

- 1. The multi-configuration Σ excited states can be strongly coupled with the Λ ground state with the help of the ΣN interaction.
- 2. These strong Λ - Σ couplings are coherently enhanced by the Fermi- and Gamow-Tellertype coupling components.
- 3. The Fermi-type coupling becomes more effective in the neutron-rich environment increasing as T(T + 1).

In conclusion, we have found that the Σ -mixing probability is about 0.35 % and the energy shift is about 0.28 MeV for the neutron-rich ${}^{10}_{\Lambda}$ Li $1^{-}_{g.s.}$ ground state, which is about 3 times larger than that for ${}^{7}_{\Lambda}$ Li.