The Nucleon Structure

Bogdan Wojtsekhowski, Hall A

- Nucleon Constituents
- **□** Electromagnetic Form Factors
- □ Neutron GEN experiment
- **G** Flavor Form Factors
- **IMF** densities
- \Box Large Q^2 program

Experimental study of structure

The beam and the target are required for study e.g. an electron beam and atomic electrons

How one can study the quark-quark "potential" ? Create "an internal beam" inside the nucleon Virtual photon absorption used to accelerate quark

3-d picture of the nucleon in IMF

 δz_{\perp}

xp _

х

Proton form factors, transverse charge & current densities

Correlated quark momentum and helicity distributions in transverse space - GPDs

 $f(\mathbf{x}, b_{\perp})$

 b_{\perp}

Structure functions, quark longitudinal momentum & helicity distributions

GPDs of the nucleon

Ji, Muller, Radyushkin (1994-1997)

Quark dynamics of the nucleon are encoded in GPDs functions $H(x, \xi, t), \tilde{H}(x, \xi, t)$ hadron helicity-conserving; $E(x, \xi, t)$, and $\tilde{E}(x, \xi, t)$ helicity-flipping distributions.

GPDs information

Ji's sum rule for quark orbital momentum

$$egin{aligned} \langle m{L}_v^q
angle &= rac{1}{2} \int_0^1 dx [x E_v^q(x, \xi=0, t=0) + x q_v(x) - \Delta q_v(x)] \ & ext{DVCS will access low } t, ext{ large } m{Q}^2 ext{ kinematics } \ & ext{FFs presently are the main source for } m{E}_v^q \end{aligned}$$

Unpolarized and Polarized Structure functions

Figure 7: The polarized structure function g_1^p as function of Q^2 in intervals of x. The error bars shown are the statistical and systematic uncertainties added in quadrature. The data are well described by our QCD NLO curves (solid lines), **ISET=3**, and its fully correlated 1σ error bands calculated by Gaussian error propagation (shaded area). The values of C(x) are given in parentheses. Also shown are the QCD NLO curves obtained by AAC (dashed lines) [15] and GRSV (dashed-dotted lines) [16] for comparison.

Now the focus is Form Factors

Lepton-Nucleon scattering

 $l(k,h) + N(p,\lambda_N) \rightarrow l(k',h') + N(p'\lambda'_N)$

 h, h', λ_N , and λ'_N are helicities

$$P = \frac{p+p'}{2}, \ K = \frac{k+k'}{2}, \ q = k - k' = p' - p$$

$$s = (p+k)^2, \, t = q^2 = -Q^2, \, u = (p-k')^2$$

$$T^{h',h}_{\lambda'_{N},\lambda_{N}}\equiv\left\langle k',h';p',\lambda'_{N}
ight|T\left|k,h;p,\lambda_{N}
ight
angle$$

Total 16 amplitudes. Parity invariance \rightarrow number of independent helicity amplitudes from 16 to 8. Time reversal invariance \rightarrow to 6. When neglect the lepton mass \rightarrow to 3. $T_{+,+}^{+,+}$; $T_{-,-}^{+,+}$; $T_{-,+}^{+,+} = T_{+,-}^{+,+}$ which are functions of (s - u) and t.

Dirac, Pauli and Sachs Form Factors

Hadron current, one-photon approximation, $\alpha_{em} = 1/137$, Rosenbluth, 1950

$$\mathcal{J}_{hadron}^{\mu} = ie\bar{N}(p_f) \left[\gamma^{\nu} F_1(Q^2) + \frac{i\sigma^{\mu\nu}q_{\nu}}{2M} F_2(Q^2)\right] N(p_i)$$

Cross section and asymmetry for electron-nucleon scattering

$$d\sigma = d\sigma_{_{NS}} \left\{ \underline{\epsilon(G_{_E})^2 + \tau(G_{_M})^2} \right\} \cdot \left[1 + h_e A(G_{_E}, G_{_M}) \right]$$

$$A = A_{\perp} + A_{\parallel} = rac{a \cdot G_E^{} G_M^{} \sin heta^\star \cos \phi^\star}{G_E^2 + c \cdot G_M^2} \ + rac{b \cdot G_M^2 \cos heta^\star}{G_E^2 + c \cdot G_M^2}$$

Sachs, 1962

Does a nucleon have a core ?

$$egin{aligned} G_{_E} &= F_1(Q^2) \,-\, rac{Q^2}{4M^2}F_2(Q^2) & G_{_M} \,=\, F_1(Q^2) \,+\, F_2(Q^2) \ T_{fi} &= 2E \cdot F(-ec{q}^{\,2}), \ ec{J} = 0 &
ho(r) \,=\, rac{1}{(2\pi)^3} \int F(-ec{q}^{\,2}) e^{iec{q}ec{r}} d^3ec{q} \end{aligned}$$

The mechanism of electron-nucleon scattering

Generalized Parton Distributions

$$egin{aligned} F_1(Q^2) &= \sum_q \int H_q(x,Q^2) dx \ F_2(Q^2) &= \sum_q \int E_q(x,Q^2) dx \end{aligned}$$

Vector Meson Dominance

$$V\,=\,
ho,\,\,
ho',\,\,\omega...$$

Two-gluon exchange (with OAM)

$$F_2/F_1 \propto rac{1}{Q^2} ln^2 (Q^2/\Lambda^2)$$

Kelly's Parameterization

Duality constrained parameterization

Now the focus is GEn

Why we study the neutron Charge Form Factor?

- Test of the QCD motivated FF models is a powerful approach to the understanding of confinement
- > Charge density is a fundamental property of the neutron
- Flavor separated FFs are a productive test of lattice QCD
- \succ Unique constraint on the model of GPDs E_u and E_d
- Dirac/Pauli density for up and down quarks and its connection to the Siver's effect
- > Applications e.g. for the neutrino-nuclei cross section

Concept of High $Q^2 G_F^n$ experiment

Optimization of the large-acceptance high-luminosity G_E^{n} experiment:

- a polarized ³He target (re-use E94-010 target)
- a dipole magnet for electron arm (re-use BigBite from NIKHEF)
- a matching neutron detector (re-use UVa and CMU bars)
- a trigger with a calorimeter (re-use E99-114 electronics)
- A key idea: focus on higher Q² at 2-3 GeV² there is G_{E}^{p}/G_{M}^{p} effect, 3q-state dominance at high Q² also $Q^2 > 2 \text{ GeV}^2$ Glauber method becomes sufficiently accurate
- Target Figure-of-Merit: $J_{beam}^{max} t_{target} P_{target}^2$

Electron-polarized neutron luminosity and high polarization of ³He target make the measurement about 10 times more effective than with ND_3 polarized target.

• **Productivity of experiment** – target FoM in combination with a large acceptance electron spectrometer: the total enhancement is more than 100, which is a key to reaching $Q^2=3.5 \text{ GeV}^2$

Conceptual setup of E02-013

Conceptual setup of E02-013

Hall A G_Eⁿ experiment Beam

Hall A G_Eⁿ experiment Beam

Hall A G_E^n experiment

Beam

• Momentum resolution of 1%

Electron Spectrometer

Optimization of acceptance: for $\Delta Q^2/Q^2 \sim 0.1$ with max Ω leads to a large aspect ratio, limited by $\cos(\phi^*)$ for asymmetry. BigBite was designed at NIKHEF for aspect ratio $\Delta \theta / \Delta \phi = 1/5!$ Spectrometer has solid angle (for 40 cm long target) 76 msr.

Detector:

15 planes of MWDCs (X,U,V) Two-layer lead-glass calorimeter Segmented Scint. Plane

Hall A G_Eⁿ experiment Beam

Considerations/Optimization

 $^{3}\vec{H}e(\vec{e},e'n)$

- Range of the momentum transfer should be < 10% \Rightarrow angular acceptance $< 10^{\circ}$ - Asymmetry vs. polarization direction, q-vector, and the e,e' plane \Rightarrow azimuth coverage $< 60^{\circ}$ - Electron arm resolution requirement => 1%- Neutron arm rate limitations => luminosity => luminosity - MWDC rate limitations => calorimeter - Trigger and DAQ capabilities
- Field gradient at the target < 1 mT/cm
- => "sheet-metal" dipole

Configuration of E02-13 is close to ideal

for a Form Factor experiment

Data analysis: step 1 – Time-of-Flight

 Δ t_{tof}, Q² = 3.5 GeV² 8000 7000 6000 5000 4000 3000 2000 1000 0 -10 -8 -6 -2 0 2 6 8 10 Δt_{tof} (ns)

Raw events (BLACK lines) have significant accidental level and large tail for slower protons RED lines present events after cut on e'-n angular correlation: accidentals and tails almost gone

Analysis: step 2 – q_{\perp} vs W; 1.7 GeV²

perpendicular "q" = q × sin(θ_{qh}); W² = M² + 2M(E-E') - Q²

Analysis: step 3 - W distribution

for 3.5 GeV² the quasi-elastic signal is very small in e,e' spectrum. However, after angular correlation cut applied the peak is just as supposed to be for quasi-elastic process

The pQCD log-scaling provided a good fit to the G_E^p/G_M^p data.

- Is pQCD log-scaling good fit for the G_E^n / G_M^n from 1.5 GeV²?
- How large Q² will be a limit for Constituent Quark Model?

The semi-final results E02-013

- The pQCD log-scaling should wait much larger Q²
- Constituent Quark Model doesn't work above 2 GeV²
- The q(qq), ANL model is only one in agreement with the data

Now return to structure

$(e,e') \Rightarrow$ Nuclear Charge Distributions

Model-independent analysis -> accurate nuclear charge distributions

Study of nucleon structure requires IMFGPDs in the impact parameter representation
$$F_1(t) = \sum_q e_q \int dx H_q(x,t)$$
 $F_1(t) = \int_q e_q \int dx H_q(x,t)$ $q(x,b) = \int \frac{d^2q}{(2\pi)^2} e^{i \cdot q \cdot b} H_q(x,t = -q^2)$ Muller, Ji, Radyushkin $q(x,b) = \int \frac{d^2q}{(2\pi)^2} e^{i \cdot q \cdot b} H_q(x,t = -q^2)$ M.Burkardt $\rho(b) \equiv \sum_q e_q \int dx \ q(x,b) = \int d^2q F_1(q^2) e^{i \cdot q \cdot b}$ P.Kroll: u/d segregation $\rho(b) = \int_0^\infty \frac{Q \cdot dQ}{2\pi} J_0(Qb) \frac{G_E(Q^2) + \tau G_M(Q^2)}{1 + \tau}$ Center of momentum $R_\perp = \sum_i x_i \cdot r_\perp, i$ b is defined relative to R_\perp Transverse center of the quarks longitudinal momentum fractions

QCD: Dirac and Pauli densities

impact parameter b

is defined relatively to the transverse center of the quarks longitudinal momentum fractions

$$egin{aligned} &
ho_{{}_{Dirac}}(b) \,=\, \int_{0}^{\infty} rac{Q d Q}{2 \pi} J_o(b Q) F_1(Q^2) \ &
ho_{{}_{Pauli}}(b) \,=\, \int_{0}^{\infty} rac{Q^2 d Q}{4 \pi \, M} J_1(b Q) F_2(Q^2) \end{aligned}$$

$$R = \sum x_i r_i$$
 $ho_{_T}(ec{b}) =
ho_{_{Dirac}} - \sin(\phi_b - \phi_{_S})
ho_{_{Pauli}}$

Polarized neutron

SIDIS should have many effects due to this u/d separation

Let see how quark rotation leads to u/d separation:

M.Burkardt (2003)

motion inside nucleon

Let see how quark rotation leads to u/d separation:

M.Burkardt (2003)

u-quark

d-quark

u-quark

d-quark

The u/d separation, observed in Form Factor data, is possibly a result of

the collective rotation of the u-quark and the d-quark, which is going in opposite directions

Flavor view with EMFFs

$F_{1(2)}^{d}/F_{1(2)}^{u}$ with proton and neutron FFs

Lattice calculation => very good agreement with the trend, need accuracy q(qq) ANL => good, possibly a signature of dominant degrees of freedom Our data will require a new fit of E_d and E_u GPDs

 $F_{1(2)}^{d}$, $F_{1(2)}^{u}$ with proton and neutron FFs

Why need higher Q²?

The semi-final results E02-013

What is happening at higher Q^2 ?

Additional advance in polarized target and the Super BigBite components (the magnet and a high-resolution high-rate capability GEM tracker) are required to extend experiment to 10 GeV².

Beam energy of 8.8 GeV, 60 µA. Target: He-3, polarization 60%, 36 days

 G_E^n at 10 GeV² with uncertainty of 20% * $G_{Galster}$ (or 0.07 G_{Dipole}).

12 GeV approved GEn experiments

Super BigBite apparatus

Proton G_E^{p}/G_M^{p} with SBS

Proton form factors ratio, E12–07–109

Neutron Transversity with SBS

Neutron Transversity, E–09–018

Single settings of SBS will provide full coverage for all $P_{\perp} < 1/6$ of P_{\parallel}

SBS physics program

- GEP : reach unique high 15 (GeV/c)² productivity !
- GMN: reach absolute max 18 (GeV/c)²
- GEN: reach fantastic value 10 (GeV/c)²
- SSA in nSIDIS: 30,000 gain vs HERMES

A1n/d2n – productivity gain ~ 20-30 compare with SHMS
 F_π – new approach with a polarimeter for the forward going neutron will allow to perform L/T separation without Rosenbluth
 H(e,e'φ)p – access to gluon at JLab

- A1p/d2p as for A1n has a very large gain of productivity
 D(e,e'd) elastic A, event rate gain ~ 50 at 6 (GeV/c)²
- $> T/^{3}He(e,e') u/d$ at high-x
- SRC: e'(HRS) + p(SBS) + N(BB)
- PVDIS gain 10-15 compare with two HRSs
- > A(e,e'p), A(e,e' $\pi^{+/-}$) each item is a big program