Hunting Traces of TeV-Scale Physics in Low-Energy Processes

Susan Gardner

Department of Physics and Astronomy University of Kentucky Lexington, KY 40506

gardner@pa.uky.edu

Hall C Summer Workshop 2007

Orientation

Collider experiments probe new physics directly. Precision, low-energy measurements probe new physics indirectly, i.e., through the failure of robust Standard Model predictions.

Some Basic Questions

- How do we know there is a "Beyond"?
- Why do we think there is new physics at the TeV scale?
- Why do we think we can probe TeV-scale physics in precision, low-energy experiments?
- Are indirect searches for new TeV-scale physics rendered obsolete by the LHC?

How do we know there is a "Beyond"?

There is much theoretical "evidence" that the Standard Model is incomplete — *it leaves many questions unanswered.*Here are a few.

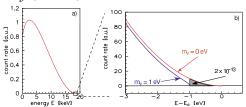
- It does not explain dark matter, dark energy
- It does not explain the number of generations nor the large range of fermion masses
- It does not explain the weak mass scale (the "hierarchy" problem)
- It cannot explain the baryon asymmetry of the Universe

Most notably, the Standard Model only explains 5% of the known Universe. There is much observational evidence for dark matter. Note, too, recent direct evidence from the "bullet" cluster:

[Clowe et al., astro-ph/0608407]

How do we know there is a "Beyond"?

We have, moreover, direct empirical evidence from terrestrial experiments for physics beyond the Standard Model.

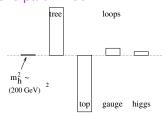

Empirical evidence for neutrino oscillations allows us to conclude $\Delta m^2 \equiv m_i^2 - m_j^2 \neq 0$ with surety.

That is, neutrinos have mass.

We see then that the particle content of the Standard Model is incomplete: there is a ν_R , which is "sterile" under Standard Model interactions.

This is not to say that the effects of neutrino mass are large.

Distortions in the shape of the electron energy spectrum in 3 H β -decay near its endpoint bound m_{ν}^2 . [KATRIN, $_{\rm [oi]}$

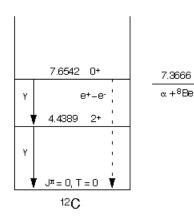

The Emergence of Physics Beyond the Standard Model

Why do we think there is new physics at \sim 1 TeV?

[Schmaltz, hep-ph/0210415]

Suppose we assume the Standard Model is valid for scales $E \leq \Lambda$, where $\Lambda \sim \mathcal{O}(1\text{TeV})$.

At one-loop level, we find large corrections to the tree-level Higgs mass $m_{\rm tree}$. All contributions must sum to $m_H^2 \sim (200 {\rm GeV})^2$, but each one $\sim \Lambda^2$! At $\Lambda = 10$ TeV, $m_{\rm tree}$ must be tuned to one part in 100!



New physics at the TeV scale can enter to make the cancellations "natural."

"Fine-Tuning" does exist in Nature

7.2747 3∝

[Hoyle, 1953; Cook, Fowler, Lauritsen, Lauritsen, 1957]

Can we probe TeV-scale physics at low energies?

Yes. Let's illustrate this in a toy model.

Consider the Gerasimov-Drell-Hearn sum rule:

[Gerasimov, 1966; Drell and Hearn, 1966.]

$$rac{2\pilpha\kappa_i^2}{ extit{M}^2} = rac{1}{\pi}\int_{\omega_ ext{th}}^{\infty}rac{\Delta\sigma_i}{\omega}\, extit{d}\omega \equiv rac{1}{\pi}\int_{\omega_ ext{th}}^{\infty}rac{\left(\sigma_ ext{P}i(\omega)-\sigma_ ext{A}i(\omega)
ight)}{\omega}\, extit{d}\omega$$

The photon and nucleon spins are aligned parallel (P) or anti-parallel (A). A *linearized* sum rule also exists:

[Holstein, Pascalutsa, and Vanderhaeghen, 2005.]

$$\frac{4\pi\alpha\delta\kappa_i}{M^2} = \frac{1}{\pi} \int_{\omega_{\text{th}}}^{\infty} \frac{\Delta\tilde{\sigma}_i}{\omega} \, d\omega$$

where $\Delta \tilde{\sigma} \equiv \partial \Delta \sigma / \partial \kappa_{0i}|_{\kappa_{0p} = \kappa_{0n} = 0}$. We can compute the contribution to κ_i from

$$\mathcal{L}_{\pi NN} = rac{g}{2M} ar{\psi} \gamma^{\mu} \gamma^5 au^a \psi \partial_{\mu} \pi^a$$

We thus determine the loop contribution to κ_i from a "pion" produced at some inelastic threshold ω_{New} in $\gamma - p$ scattering.

Can we probe TeV-scale physics at low energies?

As $\mu \equiv \textit{M}_{\pi}/\textit{M} \rightarrow \infty$ this yields

$$\delta \kappa_p = \frac{g^2}{(4\pi)^2} (5 - 4 \ln \mu) \frac{1}{\mu^2} + \mathcal{O}(\mu^{-4})$$
$$\delta \kappa_n = \frac{g^2}{(4\pi)^2} 2(3 - 4 \ln \mu) \frac{1}{\mu^2} + \mathcal{O}(\mu^{-4})$$

Thus if we choose $M_{\pi}\sim 1$ TeV, $\mu\sim 10^3$, with $g^2/4\pi=13.5$,

$$\delta \kappa_p = -2.4 \cdot 10^{-5}$$
 $\kappa_p^{\text{exp}} = 1.792847351(28)$
 $\delta \kappa_n = -5.3 \cdot 10^{-5}$ $\kappa_n^{\text{exp}} = -1.9130427(5)$

The effects of putative TeV-scale physics on the anom. mag. moments are appreciable.

The empirical anomalous magnetic moments are already sufficiently well-known to be impacted by TeV-scale physics, though these effects are obscured by non-perturbative QCD effects.

A challenge to lattice QCD!

How do we probe new physics in low-energy experiments?

We control non-perturbative QCD effects by exploiting the symmetries of the Standard Model. Some possibilities:

1. Nuclear, neutron, pion, kaon β -decay

Search for non-V-A interactions. Tests of CKM unitarity.

2. The effective weak charge of an electron, proton, nucleus

Test the "running" of $\sin^2(\theta_W(Q))$ away from the Z^0 -pole.

3. Neutron, Atom, Molecular Electric Dipole Moments

The Standard Model produces **negligibly small** EDMs. A measureably non-zero EDM connotes the presence of physics beyond the Standard Model.

Beyond "V-A" in Neutron β-Decay

The search for non-V-A interactions continues...

$$\begin{split} \mathcal{H}_{int} &= (\bar{\psi}_{p}\psi_{n})(C_{S}\bar{\psi}_{e}\psi_{\nu} + C_{S}'\bar{\psi}_{e}\gamma_{5}\psi_{\nu}) + (\bar{\psi}_{p}\gamma_{\mu}\psi_{n})(C_{V}\bar{\psi}_{e}\gamma^{\mu}\psi_{\nu} + C_{V}'\bar{\psi}_{e}\gamma^{\mu}\gamma_{5}\psi_{\nu}) \\ &- (\bar{\psi}_{p}\gamma_{\mu}\gamma_{5}\psi_{n})(C_{A}\bar{\psi}_{e}\gamma^{\mu}\gamma_{5}\psi_{\nu} + C_{A}'\bar{\psi}_{e}\gamma^{\mu}\psi_{\nu}) + (\bar{\psi}_{p}\gamma_{5}\gamma_{\mu}\psi_{n})(C_{P}\bar{\psi}_{e}\gamma_{5}\psi_{\nu} + C_{P}'\bar{\psi}_{e}\psi_{\nu}) \\ &+ \frac{1}{2}(\bar{\psi}_{p}\sigma_{\lambda\mu}\psi_{n})(C_{T}\bar{\psi}_{e}\sigma^{\lambda\mu}\psi_{\nu} + C_{T}'\bar{\psi}_{e}\sigma^{\lambda\mu}\gamma_{5}\psi_{\nu}) + h.c. \end{split}$$

[Lee and Yang, 1956; note also Gamow and Teller, 1936]

 C_X' denote parity-nonconserving interactions.

In polarized neutron (nuclear) β -decay one more correlation appears: b

$$\begin{split} d^{3}\Gamma &= \frac{1}{(2\pi)^{5}} \xi E_{e} |\boldsymbol{p}_{e}| (E_{e}^{\text{max}} - E_{e})^{2} \times \\ [1 + a \frac{\boldsymbol{p}_{e} \cdot \boldsymbol{p}_{\nu}}{E_{e} E_{\nu}} + b \frac{m}{E_{e}} + \boldsymbol{P} \cdot (A \frac{\boldsymbol{p}_{e}}{E_{e}} + B \frac{\boldsymbol{p}_{\nu}}{E_{\nu}} + D \frac{\boldsymbol{p}_{e} \times \boldsymbol{p}_{\nu}}{E_{e} E_{\nu}})] dE_{e} d\Omega_{e} d\Omega_{\nu} \end{split}$$

[Jackson, Treiman, and Wyld, Phys. Rev. 106, 517 (1957)]

Note, e.g.,

$$b\xi = \pm 2\text{Re}[C_SC_V^* + C_S'C_V'^* + 3(C_TC_A^* + C_T'C_A'^*)]$$

If the electron polarization is also detected, more correlations enter.

Limits from Nuclear β-Decay

Recent limits on *b* come from nuclear β -decay:

• $b=+0.0001\pm0.0026$ ($|C_S/C_V|\leq0.0013$) from survey of $0^+\to0^+$ transitions in nuclei [Towner and Hardy, PRL 94, 092502 (2005)]

• $\tilde{a} \equiv a/(1 + bm_e/\langle E_e \rangle) = 0.9981 \pm 0.0030 \pm 0.0037$ from $0^+ \to 0^+$ pure Fermi decay of ^{38m}K

Both limits are consistent with the Standard Model.

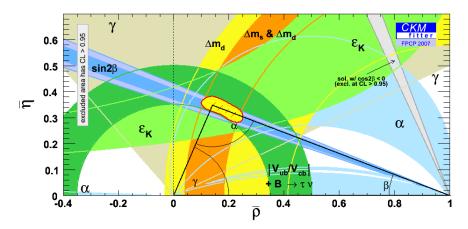
Tests to this precision do not rely on the knowledge of nuclear structure in any way.

Ingredients: CVC hypothesis $(g_V = (1 + \mathcal{O}(\alpha))V_{ud})$, recoil expansion $(\mathcal{O}(E)/M \ll 1)$.

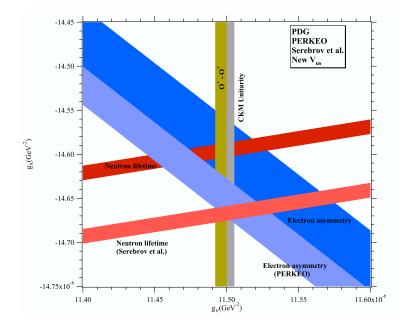
It is possible to test the CVC hypothesis (and more) in neutron β -decay through comparison of the a and A correlation coefficients. [SG, Chi Zhang, 2001]

The Cabibbo-Kobayashi-Maskawa (CKM) Matrix

$$\begin{pmatrix} d' \\ s' \\ b' \end{pmatrix}_{\text{weak}} = V_{\text{CKM}} \begin{pmatrix} d \\ s \\ b \end{pmatrix}_{\text{mass}} ; V_{\text{CKM}} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$


In the Wolfenstein parametrization (1983)

$$V_{\text{CKM}} = \begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4)$$


where $\lambda \equiv |V_{us}| \simeq 0.22$ and is thus "small". A, ρ, η are real.

- There are three "generations" of particles. Thus, the CKM matrix is unitary [$V_{\text{CKM}}^{\dagger}V_{\text{CKM}} = 1$]
- The unitarity of the CKM matrix and the structure of the weak currents implies that four parameters capture the CKM matrix.
- A real, orthogonal 3 \times 3 matrix contains three parameters. The fourth parameter (η) must make $V_{\rm CKM}$ complex.
- All CP-violating phenomena are encoded in η .

Testing CKM Unitarity – "the" Unitarity Triangle

CKMfitter: hep-ph/0104062, hep-ph/0406184; http://ckmfitter.in2p3.fr - June, 2007 update

The Effective Weak Charge

[E158, Anthony et al, PRL 95 (2005) 081601]

[Theory: Czarnecki and Marciano, 1996, 2000; Erler and Ramsey-Musolf, 2005]

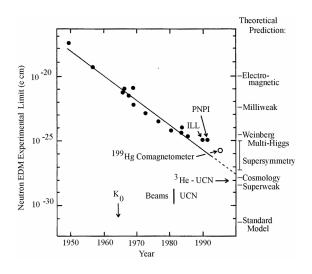
Future experimental studies should yield much sharper tests.

The Electric Dipole Moment - A Primer

The electric dipole moment d of a particle with spin S is defined via $\mathcal{H} = -d\frac{\mathbf{S}}{S} \cdot \mathbf{E}$

 $d \neq 0$ violates both T and P.

E. M. Purcell and N. F. Ramsey, "On the Possibility of Electric Dipole Moments for Elementary Particles and Nuclei," Phys. Rev. 78, 807 (1950):

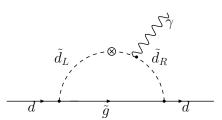

The argument against electric dipoles, in another form, raises the question of parity.... But there is no compelling reason for excluding this possibility....

Context: Dirac (1949) – A magnetic monopole violates P, T. A experimental strategy for *d*:

$$\mathcal{H} = -\mu \frac{\mathbf{S}}{S} \cdot \mathbf{B} - d \frac{\mathbf{S}}{S} \cdot \mathbf{E}$$

Limit set by neutron density, observation time, and the strength of the applied electric field.

Neutron EDM Timeline – The "Model Killer"

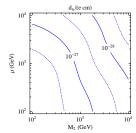

[S. Lamoreaux (Yale)]

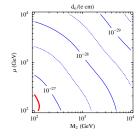
Electric Dipole Moments

EDM measurements exist on neutrons, paramagnetic atoms (205 TI: " d_e "), and diamagnetic atoms.

Supersymmetric models naturally "overproduce" electric dipole moments – picking parameters at random invariably lead to EDMs at odds with experiment, the "SUSY CP problem".

[Pospelov and Ritz, 2005]




Can resolve by making scalars heavy or CP-violating parameters small.

Electric Dipole Moments

Models with "split" supersymmetry (heavy scalars!) can still produce significant EDMs at two-loop order:

[Giudice and Romanino, 2006]

The red shows current limit on d_e .

Both d_e and d_n are expected to improve.

 $|d_n| \leq 3 \cdot 10^{-26}$ e-cm [Baker et al.,ILL, hep-ex/0602020] to 10^{-28} e-cm [LANL/SNS EDM expt]

 $|d_e| \leq 1.6 \cdot 10^{-27}$ e-CM [Regan, Commins, Schmidt, DeMille, PRL 88, 071805 (2002)]

to 10^{-29 (31)} e-cm [DeMille]

Electric Dipole Moments

Estimates of hadronic electric dipole moments depend on the hadron's non-perturbative structure.

For example, in the SM (CKM mechanism of CP violation),

long-distance effects (π -loop) give for the neutron $d_n^{\rm KM} \simeq 10^{-32} {\rm e-cm}$ [Gavela et al., PLB 1982; Khriplovich & Zhitnitsky, PLB 1982]

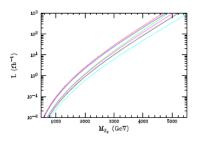
whereas a LL computation in three-loops yields

 $d_d^{
m KM} \simeq 10^{-34}
m e\text{-cm}$. [Czarnecki & Krause, PRL 1997]

cf. QCD sum rules w/ dim \leq 5 CP-violating ops. give d_n to \sim 50%

[Pospelov & Ritz, PRL 1999]

Evaluating d_n and d_p is also important to interpreting the 2H EDM.

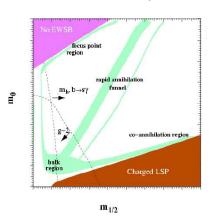

[Lebedev et al., PRD 2004]

The quality of the nucleon matrix element computations needed to extract bounds on fundamental Lagrangian parameters can be tested by confronting the empirical anomalous moments. [Brodsky, SG, Hwang, 2006]

Collider Constraints in the LHC Era

The Lesson of the Z'. Note 5σ discovery reach:

The LHC should accumulate $10fb^{-1}$ in *L* each year.


[T. Rizzo (SLAC), TASI 06]

The LHC should quickly find a Z' of a few TeV in mass — and eventually determine its spin.

But is it *really* a Z'? For that, determining its complings to SM fermions are essential... and low-energy experiments can play a crucial role.

Complementarity

In supersymmetric models with restricted parameter space (note the "CMSSM"), the constraints of the superpartner masses from cosmological and low-energy data are severe. **Caveat Emptor!**

[M. Schmitt (Northwestern), SSI 2007, after J. Feng, astro-ph/0511043 and refs. therein]

Major ticks are separated by 100 GeV.

Outlook

We look forward to an era of discovery!