Flavor decomposition at LO

H.Avakian (JLab)

Hall-C Collaboration Meeting Aug 18, 2005

Outline

Large-x behavior of valence PDFs and flavor asymmetries of the sea

- ➤ Applicability of partonic description at JLab energies
 - > Factorization in SIDIS
 - ➤ target fragmentation, FSI in ep->e'h+X
- ➤ Methods for PDF extraction.
 - Contamination from non-DIS processes
 - ➤ target fragmentation
 - ➤ exclusive production (vector mesons)

Accessing PDFs in Deep Inelastic Scattering

N'

Major source of QCD tests PDF studies

Measures $\Delta q + \Delta \overline{q}$, requires assumptions on sea

"Tagging" to distinguish different flavors and sea quarks in particular.

Additional requirments: Factorization, Fragmentation functions, particle identification, accidentals, lower rates

"Tagging" with no background from other processes (pseudoscalar mesons).

Higher Q² required for interpretations in terms of PDF. Only longitudinal photons, much lower x-sections.

 Q^2

e

Quark Polarization from DIS

$$\sigma(x,Q^2) \propto (1 + (1 - y)^2) \sum_{q} e_q^2 q(x)$$
$$q = u, \overline{u}, d, \overline{d}, s, \overline{s}$$

$$\Delta \sigma(x, Q^2) \propto (1 - (1 - y)^2) \sum_q e_q^2 \Delta q(x)$$

$$\Delta q(x) = q_{+}(x) - q_{-}(x)$$

$$g_1 = -$$

Good agreement in PDF measurements from DIS at different beam energies and Q²

Single pion production in hard scattering

Studies of hadronization both in the target and current fragmentation regions important to control SIDIS backgrounds

SIDIS: Target fragmentation

x_F>0 (current fragmentation)

 $\eta = \frac{1}{2} ln \frac{E + p_L^*}{E - p_L^*}$

Rapidity $(\eta>1)$ and x_F cuts are on average related to z cut

What is the fraction of target fragmentation in forward hemisphere?
What is the contribution to various observables (multiplicities, asymmetries)?

Quark Polarization from Semi-Inclusive DIS (SIDIS)

In SIDIS, a hadron h is detected in coincidence with the scattered lepton:

Flavor Tagging: Flavor content of observed hadron h is related to flavor of struck quark q via the fragmentation functions D(z)

Favored / disfavored

fragmentation

$$D_{\text{fav}}(z) \equiv D^{u \to \pi^+}(z) = D^{d \to \pi^-}(z) = \dots$$

$$D_{\rm dis}(z) \equiv D^{d \to \pi^+}(z) = D^{u \to \pi^-}(z) = \dots$$

$$\sigma^h(x, Q^2, z) \propto (1 + (1 - y)^2) \sum_q e_q^2 q(x, Q^2) D_q^h(z, Q^2)$$

$$\Delta \sigma^h(x, Q^2, z) \propto (1 - (1 - y)^2) \sum_q e_q^2 \Delta q(x, Q^2) D_q^h(z, Q^2)$$

$$A_1^h(x,Q^2,z) = \frac{\sum_q e_q^2 \, \Delta q(x,Q^2) \, D_q^h(z,Q^2)}{\sum_q e_q^2 \, q(x,Q^2) \, D_q^h(z,Q^2)}$$

SIDIS: factorization studies

JLab data at 6GeV are consistent with factorization and partonic description for variety of ratio observables.

distributions of p+ for different x ranges

LUND MC predictions (large z-> low Mx)

SIDIS: Missing mass of pions in ep→e'πX

No resonances seen in the target fragment for $M_X>1.4$ (Q²>1.5,W²>4)

SIDIS: factorization studies

JLab data at 6GeV are consistent with factorization and partonic description for variety of ratio observables

A_1^p -kinematic dependence for $\pi^{+/-/0}$

$$A_1^p \approx \frac{1}{P_B P_T f D_{LL}(y)} \frac{N^{+-} - N^{++}}{N^{+-} + N^{++}} \propto \frac{g_1}{f_1}$$

- No significant z-dependence of A₁ in the range 0.3<z<0.7
- •x dependence of CLAS $\mathbf{A_1}^p$ (A_L=0) consistent with HERMES data at 3 times higher Q² and with LUND-MC (lines).

SIDIS: factorization studies

- \mathbf{A}_1 inclusive and π^0 are consistent
- A_1^p P_T -dependence can serve an important check of HT effects and applicability of simple partonic description.

ep→e'πX: kinematic coverage at 12 GeV

- \rightarrow High luminosity. L=10³⁷(Hall A/C), L=10^{36/35}(Hall B)
- ➤ Wide acceptance (SIDIS, exclusive, target fragmentation)
- ➤ Wide kinematic range (test factorization, measure HT).
- ➤ Good particle ID (compare different final state particles).

SIDIS @12 GeV: analysis strategy

Use the MC (PYTHIA) and data comparison to tune the MC

- •Extract PDFs from Data/MC and define corrections due to different factors (MC).
 - Strikman et al. (Christova&Leader) method
 - Purity method
 - NLO fits
- •Define kinematic regions (in z,M_x,) where contributions from non-DIS processes and HT effect are not significant within statistical accuracy of specific measurement.

Perform studies of all contributing mechanisms, including

- 1) Higher Twist effects
- 2) Target fragmentation
- 3) Exclusive channels

Quark Polarization from Semi-Inclusive DIS (SIDIS)

$$A_1^h(x) = \frac{\int \int dQ^2 dz g_1^h}{\int \int dQ^2 dz F_1^h} = \frac{\sum_f e_f^2 \int dQ^2 \Delta q_f(x,Q^2) \int dz \tilde{D}_f^h(x,Q^2,z)}{\sum_{f'} e_{f'}^2 \int dQ^2 q_{f'}(x,Q^2) \int dz \tilde{D}_{f'}^h(x,Q^2,z)}$$

$$A_1^h(x) = \sum_f \frac{e_f^2 \int dQ^2 q_f(x, Q^2) \int dz \tilde{D}_f^h(x, Q^2, z)}{\sum_{f'} e_{f'}^2 \int dQ^2 q_{f'}(x, Q^2) \int dz \tilde{D}_{f'}^h(x, Q^2, z)} \cdot \frac{\int dQ^2 \Delta q(x, Q^2)}{\int dQ^2 q(x, Q^2)}$$

 $P_f^h(x)$ "purity"-probability of a hadron to come from a certain quark

$$\mathcal{P} = \begin{pmatrix} P_{f_1}^{h_1}(x_i) & \dots & P_{f_m}^{h_1}(x_i) \\ \vdots & \ddots & \vdots \\ P_{f_1}^{h_m}(x_i) & \dots & P_{f_n}^{h_m}(x_i) \end{pmatrix}$$

$$\vec{A}(x) = \mathcal{P}(x) \cdot \vec{Q}(x),$$

$$\vec{A} = \begin{pmatrix} A_1^{h_1}(x_i) \\ \vdots \\ A_1^{h_m}(x_i) \end{pmatrix}, \quad \vec{Q} = \begin{pmatrix} \Delta q_{f_1}/q_{f_1}(x_i) \\ \vdots \\ \Delta q_{f_n}/q_{f_n}(x_i) \end{pmatrix}$$

- Some account of TFR and factorization breaking
- •May be sensitive to ρ contamination

More studies needed

Final Δq Measurement from HERMES

HERMES polarized data from 1996 - 2000

First 5-flavor fit to $\Delta q(x)$

No evidence of anti-quark polarization, or flavor-asymmetry, ∆s≈0

Non-negative strange quark

polarization is almost impossible?

exclusive production background

Pions from string present the lower limit for current fragmentation events

Fraction of pions from exclusive ρ^0 (black squares) should have a special treatment

exclusive production background

Fraction of charged pions from rho-0 especially high for neutron target

production background from exclusive events

 $\pi 0$ "clean" (non string pions are mainly from semi-inclusive ρ +, ω)

production background from exclusive events

- •Correction for ρ^0 at large z could be very significant
- Sensitive to target fragmentation
- •More experimental studies of π contamination from exclusive $2\pi \ (\rho)$ required

Flavor decomposition of g₁

In the LO SIDIS
$$\sigma^h(x,Q^2,z) \propto (1+(1-y)^2) \sum_q e_q^2 \, q(x,Q^2) \, D_q^h(z,Q^2)$$

$$\Delta \sigma^h(x,Q^2,z) \propto (1-(1-y)^2) \sum_q e_q^2 \, \Delta q(x,Q^2) \, D_q^h(z,Q^2)$$

$$A_1^h(x,Q^2,z) = \frac{\sum_q e_q^2 \, \Delta q(x,Q^2) \, D_q^h(z,Q^2)}{\sum_q e_q^2 \, q(x,Q^2) \, D_q^h(z,Q^2)}$$

With A₁ measurements for $\pi+\pi-$ on neutron and proton ($\Delta\pi=\pi^+-\pi^-$)

close.

$$A_1^p$$
 -for $\pi^+ + \pi^-$, π^0

$$n^{\uparrow\downarrow}(x,z) \equiv \frac{1}{\sigma_{\uparrow\downarrow}^{T}} \frac{d\sigma_{\uparrow\downarrow}^{(\pi^{+}+\pi^{-})}}{dz} = \frac{\left[\frac{4}{9}u_{+}(x) + \frac{1}{9}d_{+}(x)\right]D(z) + \frac{1}{9}s_{+}(x)D_{s}(z)}{\left[\frac{4}{9}u_{+}(x) + \frac{1}{9}d_{+}(x) + \frac{1}{9}s_{+}(x)\right]}$$

$$n^{\uparrow\downarrow}(x,z) - n^{\uparrow\uparrow}(x,z) = \left[n^{\uparrow\downarrow}(x,z) + n^{\uparrow\uparrow}(x,z) - 2D(z)\right] \left(\frac{\Delta s(x) - A^{p}(x)s(x)}{s(x) - A^{p}(x)\Delta s(x)}\right)$$

Multiplicity of π^0 ($\pi^++\pi^-$) is spin independent.(if no strangeness) and provides a unique test of partonic description

• A_1 for π^0 ($\pi^+ + \pi^-$) can be a source of information on $\Delta s/s$ (Frankfurt, Strikman et al. 1989)

PEPSI MC asymmetries

SIDIS: factorization studies

- A_1 inclusive, from $\pi^+\pi^-$ sum and π^0 are consistent (in range 0.4<z<0.7)
- A_1^p dependence can serve an important check of HT effects and applicability of simple partonic description.
- •There is an indication that A_1^p of $\pi^+\pi^-$ is lower than inclusive at large z.

SIDIS: factorization studies (HERMES)

- A_1 inclusive and from $\pi^+\pi^-$ (HERMES published) show similar trend.
- Low A_1^p for $\pi^+ + \pi^-$ will lead to positive Δs (require more studies)

Conclusions

Kinematic dependence of SIDIS observables at 6GeV are consistent with factorization and simple partonic picture

Precision measurements of parton distribution and fragmentation functions in hard scattering kinematics at JLab@12 GeV require:

- Studies of semi-inclusive and exclusive processes and hadronization for different hadrons in target and current fragmentation regions
- MC generator (based on PYTHIA, JETSET) tuned for JLab, including:
 - Semi-Inclusive DIS
 - Exclusive Processes
 - Radiative Processes
 - T-odd Distribution and Fragmentation

After testing with CLAS this MC may provide basis for precision measurements of PDFs and FFs at JLab

support slides...

Deuteron to proton pion ratios

Pion ratios from e6 data at 5.7 GeV

SIDIS: MC and data analysis

"histo-data" files (P.Bosted) contain counts per bin, occupy small disk space and are used for data analysis.

N(i,j,k,l,m,n,h) array in a data file per run

The same structure created using the PEPSI-MC with CLAS acceptance and smearing included

Polarized target: HERMES vs CLAS at 5.7GeV

