Motivation for Hall C Upgrade

- Pion and nucleon form factors at high Q²
- Deep inelastic scattering at high Bjorken x
- Semi-inclusive scattering at high hadron momenta
- Polarised and unpolarised scattering on nuclei

- Highest Luminosity (L=10³⁸ nucleons/cm²/s)
- Pair of magnetic spectrometers
- Detection of charged particles with highest momenta
- Accuracy and reproducibility
- Small angle capability
- Very good particle identification
- Compatibility with all target configurations

Hall C: Cost Summary

(FY05\$K Direct)	
PED	\$992
Construction	\$18,961
TOTAL TEC	\$19,953

R&D =	\$382
ACD =	\$201

Hall C level 4 TEC Elements

(FY05 \$K Direct)

				Contingency	
Description	PED	Const	Total	\$	%
Magnet	576	9,522	10,098	3,365	33%
Detector	115	1,733	1,848	365	20%
Computing	- .	-	_	-	0%
Electronics	-	784	784	158	20%
Beamline	-	715	715	123	17%
Infrastructure	300	6,208	6,508	1,273	20%
Total	992	18,961	19,953	5,284	26%

Remarks: 1) computing needs at 12 GeV similar to 6 GeV routine Hall C computing improvements are all that is required

2) infrastructure includes spectrometer carriage (\$2.4 M) and detector shield house (\$1.2 M)

WBS 1.4.3.2 Hall C Detectors

Modular design: optimize for different experiments

Argon/Neon Cerenkov: e/π (or π/K) separation at high momenta

 C_4F_{10} Cerenkov: π/K separation for momenta > 3.4 GeV

Scintillators (time of flight): e/π and π/K separation below 2 GeV

Calorimeter: e/π separation

Space for additional detectors (not included in the project):

Aerogel Cerenkov: π/K separation at low momenta

TRD: improvement of e/π separation

Hall C Schedule

WBS 1.1.4 Hall C R&D

- Key risks: superconducting magnets
- R&D tasks:
 - > test of existing superconducting cable
 - > successful
 - > prototype of burnout proof current lead
 - > successful
 - > feasibility study of CF magnet
 - > no major problems
 - ➤ force analysis for higher gradient quadrupoles (FY06)
 - ➤ prototype of support structure for cold mass of CF magnet (FY07)
- Hall C R&D budget: \$382k (5.5% of total R&D budget)
- Key risks well addressed by R&D tasks!

Shower Counter

Calorimeter design may depend on availability of glass block shapes.

120 Ch. Five-layer Stack -or- 132 Ch. Preshower + Projective

R&D program

FY05, direct

120 lead-glass blocks: \$377 k

120 PMTs: \$62 k

120 bases: \$31 k

disc/logic/delay: \$6 k

cables: \$7 k

\$474 k procurement

