Measurements of F_2 at large x

Simona Malace

Hampton University/Bucharest University

Hall C Summer Workshop, August 18-19, 2005
Outline

- Quark-hadron duality
- Physics motivation for E00-116
- F_2^p at high x from E00-116 data
Bloom-Gilman duality

’70- Bloom and Gilman observed that the prominent resonances in e-p scattering do not disappear with increasing Q^2 relative to the “background” under them but follow the DIS scaling limit curve falling at roughly the same rate as any “background”.

Finite energy sum rule:

$$\frac{2M}{Q^2} \int_0^{\nu_m} \nu W_2(\nu, Q^2) d\nu = \int_1^{(2Mv_m+m^2)/Q^2} \nu W_2(\nu') d\nu'$$

’76- A QCD based explanation by de Rujula Georgi and Politzer: in the resonance regime the higher twist effects are small or cancel → duality
Duality in the F_2 Structure Function

Use Bjorken x instead of Bloom-Gilman’s $ω'$. Empirically, DIS region is where logarithmic scaling is observed: $Q^2 > 5$ GeV2, $W^2 > 4$ GeV2

Duality: Averaged over W, logarithmic scaling observed to work also for $Q^2 > 0.5$ GeV2, $W^2 < 4$ GeV2, resonance regime (note: $x = Q^2/(W^2-M^2+Q^2)$)

JLab results: Works quantitatively to better than 10% at surprisingly low Q^2
Quantification: Resonance Region F_2 w.r.t. Alekhin NNLO Scaling Curve

$(Q^2 \sim 1.5 \text{ GeV}^2)$

Difference between Alekhin NNLO curve (formed from lepton-nucleon scattering only) and resonance data, integrated for many spectra

$E=4 \text{ GeV}, \theta=24 \text{ Deg}$

ΔF_2

$I(\text{data-scaling curve})$

LT+TMC+HT

incomplete W region

$\int_{Q^2 < 1 \text{ GeV}^2} (\text{data-extr}) \, dW$ (GeV)

W (GeV)

N of spectra

$f=-0.0012 \pm 0.0066$
With increasing Q^2 the resonances slide towards higher x on *ALLM97* curve while pdf curve MRST+NNLO+TMC starts undershooting the data.

Higher Q^2/x data needed to get more information ...
E00-116 physics motivation

- **Resonance data**
- **High x**

Embeds higher moments

\[M_n(Q^2) = \int_0^1 dx \ x^{n-2} F(x,Q^2) \]

- **Higher twist extraction**
- **High x pdf evolution**
- **\(F_2^d / F_2^p \) ratio at large x**
E00-116 kinematics

\[Q^2 \in (3.88 - 5.25) \]
\[x \in (0.54 - 0.87) \]

\[Q^2 \in (4.32 - 5.85) \]
\[x \in (0.59 - 0.94) \]

\[Q^2 \in (4.63 - 6.27) \]
\[x \in (0.61 - 0.94) \]

\[Q^2 \in (4.88 - 6.59) \]
\[x \in (0.61 - 0.92) \]

\[Q^2 \in (5.43 - 6.91) \]
\[x \in (0.67 - 0.92) \]

\[Q^2 \in (4.89 - 7.21) \]
\[x \in (0.56 - 0.92) \]

\[Q^2 \in (5.83 - 6.62) \]
\[x \in (0.66 - 0.77) \]
Background analysis

Charge symmetric background: These are electrons coming from γ and π^0 produced in the target. $\gamma \rightarrow e^+e^-$ while $\pi^0 \rightarrow \gamma \gamma \rightarrow e^+e^-$

The background electrons are symmetrically produced in pairs with positrons that can be detected and used for background subtraction.

We used **SOS** for H,D (e, e+) measurement.

SOS has a larger acceptance than HMS. (e, e+) cross sections is varying strongly as a function of θ and E'. Therefore we need to disentangle θ and E' dependence in order to do the subtraction.

For **positron cross section calculation**, spectrometer acceptance corrections were applied and **P. Bosted model** was used for **bin centering correction**.

The background was subtracted as difference on a theta/momentum grid.
Background analysis

Positron cross sections for e00-116 kinematics on h_2 target as a function of momentum.

An example of positron cross section across angular acceptance before / after corrections: acceptance and bin centering corrections.
\[F_2 = \frac{d^3 \sigma}{d\Omega dE'} \begin{vmatrix} 1 + R \end{vmatrix} \frac{K\nu}{1 + R\epsilon} \frac{1}{4\pi^2 \alpha \Gamma} \frac{1}{1 + \nu^2 / Q^2} \]

E00-116 measures \(\frac{d^3 \sigma}{d\Omega dE'} \)

We wish to construct \(F_2 \) but have not measured \(R \).
Duality works well for $2x F_1(F_T)$, F_L and works for R.
For F_2 extraction R1998 was used.
F$_2$ sensitivity to R parameterization

R1998 was used to extract F$_2$ from the data. The relative difference in F$_2$ when using R94-110 or R1990 as opposed to R1998 is \sim 2%. So the estimated uncertainty on F$_2$ originating from the R parameterization used is 2%.
F_{2}^{p} \text{ from E00-116 data}

As observed from E94-110, MRST pdf evolution curve undershoots the data at intermediate Q^{2}, high x.

ALLM97 fit behaves, to a certain degree, as a “scaling curve” for the resonance data.
ALLM97 (Abramowicz, Levin, Levy, Maor) is a fit to a wide range of γ^*p scattering data (all existing data by 1997) with $W^2 > 3$ GeV2 including also photoproduction data (γp).

The fit form assumed for F_2 is the product of:

1. $Q^2/(Q^2+m_0^2)$
2. $c_{P,R}(t) * x_{P,R}^{a_{P,R}(t)} * (1-x)^{b_{P,R}(t)}$

where

$$t = \ln \left(\frac{\ln[(Q^2+Q_0^2)/\Lambda^2]}{\ln(Q_0^2/\Lambda^2)} \right)$$

$x_{P,R} =$ modified Bjorken x

$$1/x_{P,R} = 1 + (W^2-M^2)/(Q^2+m^2_{P,R})$$
Remaining spectra of $Q^2 = 5.0\text{ GeV}^2$, $Q^2 = 5.3\text{ GeV}^2$, $Q^2 = 6.0\text{ GeV}^2$, $Q^2 = 6.5\text{ GeV}^2$.
“Duality studies”

ALLM97 fit was used, at this stage, as scaling curve for “duality studies”.
“Duality studies”

Global duality: when integrating over the entire spectrum - resonance + DIS region – with ALLM97 as scaling curve, duality holds up to 2%.

Local duality: when integrating region by region the resonances seem 10% higher than ALLM97 fit, on average.

W^2 cuts:
- $\Delta \rightarrow (1.3 - 1.9) \text{ GeV}^2$
- $S \rightarrow (1.9 - 2.5) \text{ GeV}^2$
- $F \rightarrow (1.9 - 3.1) \text{ GeV}^2$
$F_2^P(x,Q^2)$ “kinematics”

W^2 cuts:

$\Delta \rightarrow (1.3 \text{ – } 1.9) \text{ GeV}^2$
$S \rightarrow (1.9 \text{ – } 2.5) \text{ GeV}^2$
$F \rightarrow (1.9 \text{ – } 3.1) \text{ GeV}^2$
$4^{th} \rightarrow (3.1 \text{ – } 3.9) \text{ GeV}^2$
$\text{DIS} \rightarrow (3.9 \text{ – } \ldots) \text{ GeV}^2$

These were used to average over each dis / resonance region, for a given scan, in order to obtain $F_2^P(x,Q^2)$.

Then…
\(F_2^p \) dependence of \(Q^2 \) \(\Longleftrightarrow F_2^p(Q^2) \mid_{x=\text{const}} \)

ALLM97 fit was used to bin-center \(F_2^p(x,Q^2) \) “points” at different kinematics where world data exist.

E00-116 data were compared to world data (where found) and they follow overall the same \(Q^2 \) behavior as ALLM97.
For a fixed Q^2, the F_2 dependence of x goes like $(1-x)^b$.

E00-116 F_2^p “points” were centered at a fixed $Q^2 = 5.5$ GeV2 and the x dependence of F_2^p was fitted.

If compared to ALLM97...
E00-116 is in agreement with calculation of F_2^p dependence of Q^2 using ALLM97. If fitting the x dependence of F_2^p-ALLM97 for various Q^2, a ALLM parameterization for “b power” as a function of Q^2 is obtained.

E00-116 is in agreement with calculation of “b power” dependence of Q^2 using ALLM97.
Summary

- F_2^p extracted from E00-116 resonance data were shown. With increasing Q^2/x they slide on ALLM97 curve but are becoming systematically higher than MRST+NNLO+TMC curve.

- Global and local “duality studies” were shown with ALLM97 as scaling curve but a W^2 cut study needs to be done for an accurate quantitative estimation of local duality.

- F_2^p dependence of Q^2/x for E00-116 data were checked against world data, ALLM97 fit and MRST+NNLO+TMC. E00-116 data follow the Q^2/x behavior of ALLM97 fit.

- All the studies are preliminary since iteration for both H_2 and D_2 (not shown here) data still needs to be done.

- F_2^d extracted from E00-116 D_2 data will follow soon…
• Moments of the Structure Function \[M_n(Q^2) = \int x^n x^{-2} F(x, Q^2) \] If \(n = 2 \), this is the Bloom-Gilman duality integral!

• Operator Product Expansion

\[M_n(Q^2) = \sum (nM_0^2/Q^2)^k B_{nk}(Q^2) \]

higher twist logarithmic dependence

• Duality is described in the Operator Product Expansion as higher twist effects being small or canceling

DeRujula, Georgi, Politzer (1977)
In general, Next-to-Leading-Order (NLO) perturbative QCD (DGLAP) fits do a good job of reproducing the data over the full measurement range.