Strangeness Condensation and Neutron Stars 2005 Summer Workshop Experimental Hall C

Jefferson Lab

August 18, 2005

Jürgen Schaffner–Bielich

Institute for Theoretical Physics/Astrophysics

Neutron Stars

- produced in supernova explosions (type II)
- compact, massive objects: radius \approx 10 km, mass $1 2M_{\odot}$
- extreme densities, several times nuclear density: $n \gg n_0 = 3 \cdot 10^{14} \text{ g/cm}^3$

Masses of Pulsars (Thorsett and Chakrabarty (1999))

- more than 1500 pulsars known
- best determined mass: $M = (1.4411 \pm 0.00035) M_{\odot}$ (Hulse-Taylor-Pulsar)
- shortest rotation period:
 1.557 ms (PSR 1937+21)

Heavy Neutron Stars in Pulsar–White Dwarfs Systems?

(Nice, Splaver, Stairs (2003))

- four pulsars with a white dwarf companion
- measure masses by changes in the pulsar signal
- shaded area: from theoretical limits for white–dwarf companion
- massive pulsar J0751+1807: $M = 1.6 - 2.8 M_{\odot} (2\sigma!)$
- Nice et al. (2005): $M = 2.1 \pm 0.2 M_{\odot}$ (1 σ) and $M = 1.6 - 2.5 M_{\odot}$ (2 σ)!!!

Constraints on the Mass–Radius Relation

(Lattimer and Prakash (2004))

- spin rate from PSR B1937+21 of 641 Hz: R < 15.5 km for $M = 1.4 M_{\odot}$
- observed giant glitch from Vela pulsar: moment of inertia changes by 1.4
- Schwarzschild limit (GR): $R > 2GM = R_s$
- causality limit for EoS: R > 3GM

Isolated Neutron Star RX J1856

- closest known neutron star
- perfect black-body spectrum, no spectral lines!
- for black-body emission: T = 60 eV and $R_{\infty} = R\sqrt{1 2GM/R} = 4 8$ km!

A Quark Star? (NASA press release 2002)

NASA news release 02-082: "Cosmic X-rays reveal evidence for new form of matter" — a quark star?

Modelling the Atmosphere of Neutron Stars (Burwitz et al. (2003))

- H atmospheres ruled out, they over-predict the optical flux!
- heavy element atmospheres ruled out, as there are no spectral lines!
- all classic neutron star atmosphere models fail!
- alternatives: two-component blackbody model (left plot)
- or condensed matter surface for low T < 86 eV and high $B > 10^{13}$ G (right plot) grey body with a suppression of a factor 7!

RXJ 1856: Neutron Star or Quark Star? (Trümper et al. (2003))

- two-component blackbody: small soft temperature, so as not to spoil the x-ray band
- this implies a rather LARGE radius so that the optical flux is right!
- conservative lower limit: $R_{\infty} = 16.5$ km (d/117 pc)
- excludes quark stars and even neutron stars with a quark core!?

Supernova remnant 3C58 from 1181 AD (Slane et al. 2004)

CHANDRA press release 04-13:

"Going to Extremes: Pulsar Gives Insight on Ultra Dense Matter and Magnetic Fields" — rapid cooling due to unexpected conditions in the neutron star!

Cooling of Supernova Remnants (Kaplan et al. (2004))

- newest data from four neutron stars suggest fast cooling (direct URCA)
- standard cooling curves are too high!
- large nuclear asymmetry energy generates fast cooling!
- strange particles (exotic matter) generate fast cooling!

X-Ray burster (Cottam, Paerels, Mendez (2002))

- binary systems of a neutron star with an ordinary star
- accreting material on the neutron star ignites nuclear burning
- explosion on the surface of the neutron star: x-ray burst
- red shifted spectral lines measured! ($z = 0.35 \rightarrow M/M_{\odot} = 1.5$ (R/10 km))

movie

Modelling the Neutron Star Crust

Structure of Neutron Stars — the Crust (Dany Page)

• $n \le 10^4$ g/cm³: atmosphere (atoms)

Structure of Neutron Stars — the Crust (Dany Page)

- $n \le 10^4$ g/cm³: atmosphere (atoms)
- n = 10⁴ 4 · 10¹¹ g/cm³:
 outer crust or envelope
 (free e⁻, lattice of nuclei)

Structure of Neutron Stars — the Crust (Dany Page)

- $n \le 10^4$ g/cm³: atmosphere (atoms)
- n = 10⁴ 4 · 10¹¹ g/cm³:
 outer crust or envelope
 (free e⁻, lattice of nuclei)
- $n = 4 \cdot 10^{11} 10^{14}$ g/cm³: Inner crust (lattice of nuclei with free neutrons and e^-)

Composition of the crust of a neutron star

lattice of nuclei surrounded by free electrons

- Wigner–Seitz–cell, lattice structure is bcc
- minimize $E = E_{\text{nuclei}} + E_{\text{lattice}} + E_{\text{electrons}}$
- loop over all particle stable nuclei (up to 14.000)
- use atomic mass evaluation of 2003 by Audi, Wapstra, and Thibault
- extrapolate to the drip-line with various models
- \implies sequence of nuclei ^{A}Z as a function of density

Nuclear Models

• Nonrelativistic nuclear models:

- Skyrme Hartree-Fock plus BCS pairing (MSk7)
- Skyrme Hartree-Fock-Bogoliubov (SLy4, SkP, SkM*, BSk8)
- Extended Thomas-Fermi models plus BCS pairing (SkSC4, SkSC18)
- Relativistic nuclear models:
 - Relativistic Mean–Field (NL3, NL-Z2)
 - Relativistic Point–Coupling (PCF1)
 - Chiral Effective Lagrangian (Chiral)

nuclear data tables generated "in-house" or taken from home-pages of BRUSLIB and Dobaczewski

Chiral Effective Lagrangian

(Papazoglou, Zschiesche, JSB, Schramm, Stöcker, Greiner, PRC 59, 411 (1999))

- invariant under $SU(3)_L \times SU(3)_R$ chiral symmetry
- with scalar + pseudoscalar, vector + axial-vector meson-nonet
- with baryon octet (and baryon decuplet)
- with explicit and spontaneous symmetry breaking
- fit to hadron masses, nuclei and hypernuclei (~ 10 parameters)

good description of hadron masses, nuclear matter, nuclei and hypernuclei

Sequence to the Dripline (Hempel, Rüster, JSB 2005)

• outer crust starts with iron (⁵⁶Fe) up to $\rho \approx 10^7$ g/cm³

- continues along nickel isotopes (Z = 28), then Kr, Se (N = 50)
- initial sequence at low densities independent of parameter set (data)!
- equation of state (nearly) independent of parameter set!

Sequence to the Dripline II (Hempel, Rüster, JSB 2005)

- selection of state-of-the-art mass tables (deformed calculations)
- intial sequence of nuclei: Se, Ge, Zn (data)
- overall narrow range in Z
- neutron drip around $5 \cdot 10^{11}$ g/cm³

Nuclei in the crust (Hempel, Rüster, JSB 2005)

• sequence of nuclei: along N = 50 then along N = 82 with Z = 46 - 34

- common endpoint around N = 82 and Z = 36 (!)
- common location of the dripline at N = 82 (!)
- updates classic work of Baym, Pethick, Sutherland from 1971!

Modelling the Neutron Star Core

Structure of a Neutron Star — the Core (Fridolin Weber)

Neutron Star Matter for a Free Gas

(Ambartsumyan and Saakyan, 1960)

Hadron	p,n	Σ^{-}	Λ	others
appears at:	$\ll n_0$	$4n_0$	$8n_0$	$> 20n_0$

Neutron Star Matter for a Free Gas

(Ambartsumyan and Saakyan, 1960)

Hadron	p,n	Σ^{-}	Λ	others
appears at:	$\ll n_0$	$4n_0$	$8n_0$	$> 20n_0$

but the corresponding equation of state results in a maximum mass of only

$$M_{\rm max} \approx 0.7 M_{\odot} < 1.44 M_{\odot}$$

(Oppenheimer and Volkoff, 1939)

Neutron Star Matter for a Free Gas

(Ambartsumyan and Saakyan, 1960)

Hadron	p,n	Σ^{-}	Λ	others
appears at:	$\ll n_0$	$4n_0$	$8n_0$	$> 20n_0$

but the corresponding equation of state results in a maximum mass of only

$$M_{\rm max} \approx 0.7 M_{\odot} < 1.44 M_{\odot}$$

(Oppenheimer and Volkoff, 1939)

⇒ effects from strong interactions are essential to describe neutron stars!

NA: attractive $\rightarrow \Lambda$ -hypernuclei for A = 3 - 209 $U_{\Lambda} = -30$ MeV at $n = n_0$

NA: attractive $\rightarrow \Lambda$ -hypernuclei for A = 3 - 209 $U_{\Lambda} = -30$ MeV at $n = n_0$

N Σ : ⁴₂He hypernucleus bound by isospin forces Σ^- atoms: potential is repulsive

NA: attractive $\rightarrow \Lambda$ -hypernuclei for A = 3 - 209 $U_{\Lambda} = -30$ MeV at $n = n_0$

N Σ : ${}_{\Sigma}^{4}$ He hypernucleus bound by isospin forces Σ^{-} atoms: potential is repulsive

NE: attractive \rightarrow 7 Ξ hypernuclear events $U_{\Xi} = -28$ MeV at $n = n_0$ quasi-free production of Ξ : $U_{\Xi} = -18$ MeV

NA: attractive $\rightarrow \Lambda$ -hypernuclei for A = 3 - 209 $U_{\Lambda} = -30$ MeV at $n = n_0$

N Σ : ${}_{\Sigma}^{4}$ He hypernucleus bound by isospin forces Σ^{-} atoms: potential is repulsive

NE: attractive \rightarrow 7 Ξ hypernuclear events $U_{\Xi} = -28$ MeV at $n = n_0$ quasi-free production of Ξ : $U_{\Xi} = -18$ MeV

 $\Lambda\Lambda$: attractive \rightarrow 5 $\Lambda\Lambda$ hypernuclear measurements more attractive than N Λ ?

NA: attractive $\rightarrow \Lambda$ -hypernuclei for A = 3 - 209 $U_{\Lambda} = -30$ MeV at $n = n_0$

N Σ : ${}_{\Sigma}^{4}$ He hypernucleus bound by isospin forces Σ^{-} atoms: potential is repulsive

NE: attractive \rightarrow 7 Ξ hypernuclear events $U_{\Xi} = -28$ MeV at $n = n_0$ quasi-free production of Ξ : $U_{\Xi} = -18$ MeV

 $\Lambda\Lambda$: attractive \rightarrow 5 $\Lambda\Lambda$ hypernuclear measurements more attractive than N Λ ?

YY: $Y = \Lambda, \Sigma, \Xi$, unknown!

Λ Single–Particle Energies

(Rufa, JS, Maruhn, Stöcker, Greiner, Reinhard (1990))

- measured in (π^+, K^+) reactions
- spin–orbit splitting smaller than experimental resolution
- fit to single particle energies: $U_{\Lambda} = -27$ MeV for $A \to \infty$

Λ potential in nuclear matter (JSB, Bondorf, Mishustin 1997)

- hyperon potential in various (relativistic) parameterizations
- hyperon potential becomes repulsive above $2n_0$
- compatible with hypernuclear data, three-body interactions for hyperons (MDG: Millener, Dover, Gal 1988)

two Λ s bound in a nucleus, produced by Ξ^- capture

1963 Danysz et al.: ${}^{10}_{\Lambda\Lambda}Be \rightarrow {}^{9}_{\Lambda}Be + p + \pi^{-}$

1966 Prowse:

 $^{6}_{\Lambda\Lambda}$ He $\rightarrow^{5}_{\Lambda}$ He+p $+\pi^{-}$

two Λ s bound in a nucleus, produced by Ξ^- capture

1963 Danysz et al.: ${}^{10}_{\Lambda\Lambda}Be \rightarrow {}^{9}_{\Lambda}Be + p + \pi^{-}$

1966 Prowse:

 $_{\Lambda\Lambda}^{6}\text{He}{\rightarrow}_{\Lambda}^{5}\text{He}{+}p+\pi^{-}$

1991 Aoki et al.:

 $^{13}_{\Lambda\Lambda}$ B $\rightarrow^{13}_{\Lambda}$ C $+\pi^{-}$

two Λ s bound in a nucleus, produced by Ξ^- capture

- 1963 Danysz et al.: ${}^{10}_{\Lambda\Lambda}Be \rightarrow {}^{9}_{\Lambda}Be + p + \pi^{-}$
- 1966 Prowse: ${}_{\Lambda\Lambda}^{6}\text{He} \rightarrow {}_{\Lambda}^{5}\text{He} + \overline{p + \pi^{-}}$

1991 Aoki et al.: ${}^{13}_{\Lambda\Lambda}B \rightarrow {}^{13}_{\Lambda}C + \pi^-$

2001 E373 (KEK): ${}^{6}_{\Lambda\Lambda}$ He $\rightarrow^{5}_{\Lambda}$ He+p $+\pi^{-}$

2001 E906 (BNL): ${}^{4}_{\Lambda\Lambda}H \rightarrow {}^{4}_{\Lambda}He + \pi^{-}$ ($\approx 400 \text{ events!}$)

two Λ s bound in a nucleus, produced by Ξ^- capture

- 1963 Danysz et al.: ${}^{10}_{\Lambda\Lambda}Be \rightarrow {}^{9}_{\Lambda}Be + p + \pi^{-}$
- 1966 Prowse: ${}_{\Lambda\Lambda}{}^{6}\text{He} \rightarrow {}_{\Lambda}{}^{5}\text{He} + p + \pi^{-}$

1991 Aoki et al.: ${}^{13}_{\Lambda\Lambda}B \rightarrow {}^{13}_{\Lambda}C + \pi^-$

2001 E373 (KEK): ${}^{6}_{\Lambda\Lambda}$ He $\rightarrow^{5}_{\Lambda}$ He+p $+\pi^{-}$

2001 E906 (BNL): ${}^{4}_{\Lambda\Lambda}H \rightarrow {}^{4}_{\Lambda}He + \pi^{-}$ (≈ 400 events!)

• $\Lambda\Lambda$ interaction is attractive

two Λ s bound in a nucleus, produced by Ξ^- capture

- 1963 Danysz et al.: ${}^{10}_{\Lambda\Lambda}Be \rightarrow {}^{9}_{\Lambda}Be + p + \pi^{-}$
- 1966 Prowse: ${}_{\Lambda\Lambda}{}^{6}\text{He} \rightarrow {}_{\Lambda}{}^{5}\text{He} + p + \pi^{-}$

1991 Aoki et al.: $13_{\Lambda\Lambda} B \rightarrow {}^{13}_{\Lambda} C + \pi^-$

2001 E373 (KEK): ${}^{6}_{\Lambda\Lambda}$ He $\rightarrow^{5}_{\Lambda}$ He+p $+\pi^{-}$

2001 E906 (BNL): ${}^{4}_{\Lambda\Lambda}H \rightarrow {}^{4}_{\Lambda}He + \pi^{-}$ (≈ 400 events!)

- $\Lambda\Lambda$ interaction is attractive
- no strong decay to the H-dibaryon seen $\Lambda + \Lambda \rightarrow H \rightsquigarrow m_H > 2m_\Lambda - B_{\Lambda\Lambda} \sim 2220 \text{ MeV}$

Systems of Nucleons and Hyperons

(JS, Dover, Gal, Greiner, Stöcker (1993))

- Pauli-blocking of the reactions: $\Lambda + \Lambda \leftrightarrow \Xi + N$, $Q \approx -25$ MeV
- Σ s are not stable: $\Sigma + N \rightarrow \Lambda + N$, $Q \approx -80$ MeV
- nuclear binding energy with Λ s and Ξ s increases to E/A = -12 MeV!

Neutron Star Matter and Hyperons

Hyperons appear at $n \approx 2n_0!$ (based on hypernuclear data!)

- nonrelativistic potential model (Balberg and Gal, 1997)
- quark-meson coupling model (Pal et al., 1999)
- relativistic mean—field models (Glendenning, 1985; Knorren, Prakash, Ellis, 1995; JS and Mishustin, 1996)
- relativistic Hartree–Fock (Huber, Weber, Weigel, Schaab, 1998)
- Brueckner–Hartree–Fock (Baldo, Burgio, Schulze, 2000; Vidana et al., 2000)
- chiral effective Lagrangian's (Hanauske et al., 2000)
- density-dependent hadron field theory (Hofmann, Keil, Lenske, 2001)
- \Rightarrow neutron stars are strange !!!

Impact of hyperons on the maximum mass of neutron stars

(Glendenning and Moszkowski 1991)

- neutron star with nucleons and leptons only: $M \approx 2.3 M_{\odot}$
- substantial decrease of the maximum mass due to hyperons!
- maximum mass for "giant hypernuclei": $M \approx 1.7 M_{\odot}$
- noninteracting hyperons result in a too low mass: $M < 1.4 M_{\odot}$!

Modern many-body approaches to neutron stars

beyond mean-field ...

- Relativistic Hartree-Fock (Huber et al. 1998): $M_{\rm max} = 1.3 - 1.6 M_{\odot}$ depending on hyperon coupling strength
- Brueckner-Hartree-Fock: using Nijmegen soft-core YN potential
- Vidana et al. (2000): $M_{\rm max} = 1.47 M_{\odot}$ (NN and YN interactions), $M_{\rm max} = 1.34 M_{\odot}$ (NN, NY, YY interactions)
- Baldo et al. (2000): $M_{\rm max} = 1.26 M_{\odot}$ including three-body forces
- too soft EoS, too low masses!
- three-body force for hyperons? momentum dependence?
 typically p = 300 600 MeV

Composition of Neutron Star Matter

- attractive potential for Σ s and Ξ s
- Σ^- appear shortly before Λ s around $n = 2n_0$
- As present in matter at $n = 2.5n_0$, Ξ^- before $n = 3n_0$

Composition of Neutron Star Matter II

- As are present close to $n = 2n_0$
- repulsive potential for Σ s: Σ hyperons do not appear at all!
- Ξ^- present in matter before $n = 3n_0$

Phase Transition to Hypermatter

- increase strength of YY interactions
- first order phase transition, mixed phase for a wide range of densities
- all hyperons (Λ , Ξ^0 , Ξ^-) appear at the start of the mixed phase

Ultracompact Neutron Stars with Hyperons — Hyperon Stars

(JSB, Hanauske, Stöcker, Greiner, PRL 89, 171101 (2002))

- new stable solution in the mass-radius diagram!
- neutron star twins: $M_{\rm hyp} \sim M_n$ but $R_{\rm hyp} < R_n$
- selfbound compact stars for strong attraction with R = 7 - 8 km

Third Family of Compact Stars

(Glendenning, Kettner 2000; Schertler, Greiner, JSB, Thoma 2000)

- third solution to the TOV equations besides white dwarfs and neutron stars, solution is stable!
- generates stars more compact than neutron stars!
- possible for any first order phase transition!

 delayed collapse of a proto-neutron star to a black hole (Thorsson, Prakash, Lattimer, 1994)

- delayed collapse of a proto-neutron star to a black hole (Thorsson, Prakash, Lattimer, 1994)
- spontaneous spin-up of pulsars (Glendenning, Pei, Weber, 1997)

- delayed collapse of a proto-neutron star to a black hole (Thorsson, Prakash, Lattimer, 1994)
- spontaneous spin-up of pulsars (Glendenning, Pei, Weber, 1997)
- mass-radius relation: rising twins (Schertler et al., 2000)

- delayed collapse of a proto-neutron star to a black hole (Thorsson, Prakash, Lattimer, 1994)
- spontaneous spin-up of pulsars (Glendenning, Pei, Weber, 1997)
- mass-radius relation: rising twins (Schertler et al., 2000)
- collapse of a neutron star to the third family? (gravitational waves, γ-rays, neutrinos)

- delayed collapse of a proto-neutron star to a black hole (Thorsson, Prakash, Lattimer, 1994)
- spontaneous spin-up of pulsars (Glendenning, Pei, Weber, 1997)
- mass-radius relation: rising twins (Schertler et al., 2000)
- collapse of a neutron star to the third family? (gravitational waves, γ-rays, neutrinos)
- secondary shock wave in supernova explosions?

- delayed collapse of a proto-neutron star to a black hole (Thorsson, Prakash, Lattimer, 1994)
- spontaneous spin-up of pulsars (Glendenning, Pei, Weber, 1997)
- mass-radius relation: rising twins (Schertler et al., 2000)
- collapse of a neutron star to the third family? (gravitational waves, γ-rays, neutrinos)
- secondary shock wave in supernova explosions?
- gravitational waves from colliding neutron stars?

- delayed collapse of a proto-neutron star to a black hole (Thorsson, Prakash, Lattimer, 1994)
- spontaneous spin-up of pulsars (Glendenning, Pei, Weber, 1997)
- mass-radius relation: rising twins (Schertler et al., 2000)
- collapse of a neutron star to the third family? (gravitational waves, γ-rays, neutrinos)
- secondary shock wave in supernova explosions?
- gravitational waves from colliding neutron stars?

• . . .

Cooling processes with neutrinos

modified URCA process (slow): $N + p + e^- \rightarrow N + n + \nu_e$ $N + n \rightarrow N + p + e^- + \bar{\nu}_e$ direct URCA process (fast):

 $p + e^- \rightarrow n + \nu_e$ $n \rightarrow p + e^- + \bar{\nu}_e$ can only proceed for $p_F^p + p_F^e \ge p_F^n$! Charge neutrality implies:

$$n_p = n_e \hookrightarrow p_F^p = p_F^e \hookrightarrow 2p_F^p = p_F^n \hookrightarrow n_p/n \ge 1/9$$

nucleon URCA only possible for a large fraction of protons! hyperon URCA process:

$$\Lambda \to p + e^- + \bar{\nu}_e \quad , \quad \Sigma^- \to n + e^- + \bar{\nu}_e \quad , \quad \dots$$

happens immediately when hyperons are present! only suppressed by hyperon pairing gaps!

Hyperon cooling with gaps (Schaab, JSB, Balberg 1998)

- slow cooling for low mass neutron stars
- fast cooling for heavier ones (direct nucleon URCA)
- hyperons are present in the core for $M \ge 1.35 M_{\odot}$
- hyperon cooling suppressed by pairing gaps (same curve for $M = 1.6 M_{\odot}$)

Hyperon cooling with gaps II (Page, Lattimer, Prakash, Steiner 2000)

- fast cooling for $M \ge 1.3 M_{\odot}$ stars via direct nucleon URCA
- even faster cooling for heavier stars via hyperon direct URCA
- hyperon cooling not suppressed by pairing gaps!
- tiny density range of unpaired Λ hyperons present as Σ hyperons appear later!

Future of Pulsar Physics: Square Kilometer Array (SKA)

- receiving surface of 1 million square kilometers
- 1 billion dollar international project
- potential to discover:
 - 10,000 to 20,000 new pulsars
 - more than 1,000 millisecond pulsars
 - at least 100 compact relativistic binaries!
- probing the equation of state at extreme limits!
- cosmic gravitational wave detector by using pulsars as clocks!

movie

• hyperons have a substantial impact on neutron star properties!

- hyperons have a substantial impact on neutron star properties!
- sizable decrease in the maximum mass of neutron stars due to hyperons!

- hyperons have a substantial impact on neutron star properties!
- sizable decrease in the maximum mass of neutron stars due to hyperons!
- Λ hyperons appear at $n = 2n_0$ in neutron star matter

- hyperons have a substantial impact on neutron star properties!
- sizable decrease in the maximum mass of neutron stars due to hyperons!
- Λ hyperons appear at $n = 2n_0$ in neutron star matter
- Σ hyperons are likely to be upsent for a repulsive potential

- hyperons have a substantial impact on neutron star properties!
- sizable decrease in the maximum mass of neutron stars due to hyperons!
- Λ hyperons appear at $n = 2n_0$ in neutron star matter
- Σ hyperons are likely to be upsent for a repulsive potential
- first order phase transition with hyperons possible

- hyperons have a substantial impact on neutron star properties!
- sizable decrease in the maximum mass of neutron stars due to hyperons!
- Λ hyperons appear at $n = 2n_0$ in neutron star matter
- Σ hyperons are likely to be upsent for a repulsive potential
- first order phase transition with hyperons possible
- → generates a new, stable solution for compact stars! (besides white dwarfs and neutron stars)
 - \Rightarrow small and really dense stars

- hyperons have a substantial impact on neutron star properties!
- sizable decrease in the maximum mass of neutron stars due to hyperons!
- Λ hyperons appear at $n = 2n_0$ in neutron star matter
- Σ hyperons are likely to be upsent for a repulsive potential
- first order phase transition with hyperons possible
- → generates a new, stable solution for compact stars! (besides white dwarfs and neutron stars)
 ⇒ small and really dense stars
- presence of hyperons can cool rapidly via hyperon direct URCA process

- hyperons have a substantial impact on neutron star properties!
- sizable decrease in the maximum mass of neutron stars due to hyperons!
- Λ hyperons appear at $n = 2n_0$ in neutron star matter
- Σ hyperons are likely to be upsent for a repulsive potential
- first order phase transition with hyperons possible
- → generates a new, stable solution for compact stars! (besides white dwarfs and neutron stars)
 - \Rightarrow small and really dense stars
- presence of hyperons can cool rapidly via hyperon direct URCA process
- hyperon cooling can be suppressed by hyperon pairing, depends on Σ hyperon composition!