ES&H DIVISION RADIATION CONTROL DEPARTMENT radiological safety analysis document # Hall D Winter 2023 Run GLUEX phase II E12-12-002 Liaison: B. Zihlmann **December 15, 2022** #### RCD-RSAD-12.15.2022-HD Priority review level 1 Document classification 4 Next review due n/a Submit for approval yes no Thomas Jefferson National Accelerator Facility ## Hall D Winter 2023 Run ## **GLUEX** phase II (E12-12-002) RCD-RSAD-12.15.2022-HD | Approval | Keith Welch (Dec 15, 2022 23:43 EST) | Dec 15, 2022 | | |-----------------------|---|--------------------|--| | | Keith Welch, Manager
Radiation Control Department | Date | | | Preparer/
Reviewer | Lorenzo Zana (Dec 15, 2022 23:45 EST) Lorenzo Zana, Radiation Physicist Radiation Control Department | Dec 15, 2022 Date | | | Preparer/
Reviewer | Mikhail Kostin (Dec 16, 2022 14:25 EST) Mikhail Kostin, Radiation Physics Manager Radiation Control Department | Dec 16, 2022 Date | | | Liaison | Benedikt Zihlmann Benedikt Zihlmann (Dec 17, 2022 02:47 EST) Benedikt Zihlmann, Staff Scientist | Dec 17, 2022 | | Hall D ### **Contents** | 1 | DESCRIPTION | 1 | |---|---|---| | 2 | SUMMARY and CONCLUSIONS | 1 | | 3 | CALCULATIONS of RADIATION DEPOSITED in the EXPERIMENTAL HALL | 1 | | 4 | RADIATION HAZARDS | 2 | | | 4.1 Beam in the Hall | 2 | | | 4.2 Activation of Target and Beamline Components | 2 | | 5 | INCREMENTAL SHIELDING or OTHER RADIATION-REDUCTION MEASURES | 2 | | 6 | OPERATIONS PROCEDURES | 3 | | 7 | DECOMMISSIONING and DECONTAMINATION of RADIOACTIVE COMPONENTS | 3 | | Ω | RADIATION DAMAGE to HALL DELECTRONICS | 2 | RSAD-12.15.2022-HD This Radiological Safety Analysis Document (RSAD) identifies the general conditions and controls with regard to production, movement, or import of radioactive materials. #### 1 DESCRIPTION The winter 2023 Hall D run is scheduled from January 12, 2023 to March 16, 2023 with a total running time of 64 days and, will utilize up to 12 GeV electron beam. Most of the run will be limited to the standard operating conditions: 20 μ m and 58 μ m diamond radiators; 5 mm diameter collimator; and, 30 cm liquid hydrogen target in the hall. In addition, up to 480 nA beam will be used in the 4.5x10⁻⁴ X_0 aluminum radiator run for up to 10 days, and up to 2 μ A beam – in the high luminosity test runs for up to 3 shifts. The run plan is summarized below. | Radiator | Current (nA) | Total
Time | Comment(s) | |--|--------------|---------------|--| | 4.75x10 ⁻⁴ X ₀ (58 μm diamond) | < 400 | 80% | - standard running conditions - 30 cm liquid hydrogen target | | 4.5x10 ⁻⁴ X ₀ Al | < 480 | 15% | - standard running conditions - 30 cm liquid hydrogen target | | 4.75x10 ⁻⁴ X ₀ (58 μm diamond) | < 400 | 5% | - standard running conditions - empty cryo target cell | Hall D winter 2023 run plan #### **2** SUMMARY and CONCLUSIONS The winter 2023 Hall D run is not expected to produce significant levels of radiation at the site boundary. However, it will be continuously monitored by the Radiation Control Department (RCD) to ensure that the site boundary goal is not exceeded. Activation of targets, collimators and beam line hardware must also be considered. As specified in Sections 4 (4.2) and 7, the manipulation and/or handling of targets and beam line hardware (potentially radioactive material), the transfer of radioactive material, or modifications to the beam line after the target assembly must be reviewed and approved by the RCD. Adherence to this RSAD is vital. #### 3 CALCULATIONS of RADIATION DEPOSITED in the EXPERIMENTAL HALL The radiation budget for a given experiment is the amount of radiation that is expected at site boundary as a result of a given set of experiments. This budget may be specified in terms of mrem at site boundary or as a percentage of the Jefferson Lab design goal for dose to the public, which is 10 mrem per year. The Jefferson Lab design goal is 10% of the DOE annual dose limit to the public, and cannot be exceeded without prior written consent from the RCD Head, the Director of Jefferson Lab, and the Department of Energy. Comparison of the beam configuration parameters of the winter 2023 run with the previous Hall D runs, as well as with the parameters used in the "Shielding Basis for Hall D Complex" (JLAB-TN-08-033) indicate that it will have negligible contribution to the site boundary dose. This expectation will be verified during the run using the active monitors at the Jefferson Lab site boundary. If it appears that the radiation budget RSAD-12.15.2022-HD Page | 1 will be exceeded, RCD will require a meeting with the experimenters and the Head of the Physics Division to determine if the run conditions are accurate, and to assess what actions may reduce the dose rates at site boundary. If the site boundary dose approaches or exceeds 10 mrem during any calendar year, the run program will stop until a resolution can be reached. #### 4 RADIATION HAZARDS The following controls shall be used to prevent the unnecessary exposure of personnel and to comply with Federal, State, and local regulations, as well as with TJNAFs and the experimenter's home institution policies. #### 4.1 Beam in the Hall When the Hall status is Beam Permit, there are potentially lethal conditions present. Therefore, prior to going to Beam Permit, several actions will occur. Announcements will be made over the intercom system notifying personnel of a change in status from Restricted Access (free access to the Hall is allowed, with appropriate dosimetry and training) to Sweep Mode. All magnetic locks on exit doors will be activated. Persons trained to sweep the area will enter by keyed access (Controlled Access) and search in all areas of the Hall to check for personnel. After the sweep, another announcement will be made, indicating a change to Power Permit, followed by Beam Permit. The Run-Safe boxes will indicate "OPERATIONAL" and "UNSAFE". IF YOU ARE IN THE HALL AT ANY TIME THAT THE RUN-SAFE BOXES INDICATE "UNSAFE", IMMEDIATELY HIT THE BUTTON ON THE BOX. Controlled Area Radiation Monitors (CARMs) are located in strategic areas around the Hall and the Counting House to ensure that unsafe conditions do not occur in occupied areas. #### 4.2 Activation of Target and Beamline Components All radioactive materials brought to Jefferson Lab shall be identified to the RCD. These materials include, but are not limited to radioactive check sources (of any activity, exempt or non-exempt), previously used targets or radioactive beam line components, or previously used shielding or collimators. The RCD inventories and tracks all radioactive materials onsite. The RCD will coordinate all movement of used targets, collimators, and shields. The RCD will assess the radiation exposure conditions and will implement controls as necessary based on the radiological hazards. There shall be no local movement of activated target configurations without direct supervision by the RCD. Remote movement of target configurations shall be permitted, providing the method of movement has been reviewed and approved by the RCD. No work is to be performed on beam line components, which could result in dispersal of radioactive material (e.g., drilling, cutting, welding, etc.). Such activities must be conducted only with specific permission and control of the RCD. ## 5 INCREMENTAL SHIELDING or OTHER RADIATION-REDUCTION MEASURES None RSAD-12.15.2022-HD Page | 2 #### 6 OPERATIONS PROCEDURES All experimenters must comply with experiment-specific administrative controls. These controls begin with the measures outlined in the experiment's Conduct of Operations Document, and also include, but are not limited to, Radiation Work Permits, Temporary Operational Safety Procedures, and Operational Safety Procedures, or any verbal instructions from the Radiation Control Department. A general access RWP is in place that governs access to Hall D tagger building, Hall D proper, and the accelerator enclosure, which may be found in the Machine Control Center (MCC); it must be read and signed by all participants in the experiment. Any individual with a need to handle radioactive material at Jefferson Lab shall first complete Radiation Worker level one (RW I) training. There shall be adequate communication between the experimenter(s) and the Accelerator Crew Chief and/or Program Deputy to ensure that all power restrictions on the radiator and the target are well known. Exceeding these power restrictions may lead to excessive and unnecessary contamination, activation, and personnel exposure. The radiator assembly and the downstream beam-line components may not be altered outside the scope of this RSAD without formal RCD review. Alteration of these components may increase radiation production in the Hall and subsequently increase the site boundary dose. #### 7 DECOMMISSIONING and DECONTAMINATION of RADIOACTIVE COMPONENTS Experimenters shall retain all targets and experimental equipment brought to Jefferson Lab for temporary use during the experiment. After sufficient decay of the radioactive target configurations, they shall be returned to the experimenter's home institution for final disposition. All transportation shall be conducted in accordance with United States Department of Transportation Regulations (Title 49, Code of Federal Regulations). In the event that the experimenter's home institution cannot accept the radioactive material due to licensing requirements, the experimenter shall arrange for appropriate transfer of funds for disposal of the material. TJNAF cannot indefinitely store radioactive targets and experimental equipment. #### 8 RADIATION DAMAGE to HALL D ELECTRONICS Due to the low overall beam power planned to be delivered to the hall during the winter 2023 Hall D run, no problems are anticipated with respect to radiation damage to the electronics, including the most vulnerable silicon photomultipliers. The Radiation Control Department may be reached at any time through the Accelerator Crew Chief (757-269-7045) or directly by calling the RadCon cell phone (757-876-1743). On weekends, swing, and owl shifts, requests for RadCon support should be made through the Crew Chief. This will ensure prompt response with no duplication of effort. RSAD-12.15.2022-HD Page | 3