

2015 CEC Cryocooler Short Course



# **Cryocoolers for Space Applications #2**

R.G. Ross, Jr.

Jet Propulsion Laboratory California Institute of Technology

## **Topics**

- Space Cryocooler Historical Overview and Applications
- Space Cryogenic Cooling System Design and Sizing
- Space Cryocooler Performance and How It's Measured
- Cryocooler-Specific Application and Integration Example: The AIRS Instrument



# Session 2—Space Cryogenic Cooling System Design and Sizing



# **Topics**

- Spacecraft Design and Qualification Requirements Overview
- Cryogenic Load Estimation and Management Practices
- Estimating Cryocooler Off-State Conduction
- Vacuum Level Considerations for Cryogenic Applications
  - Gaseous Conduction, Cryopumping, High Emittance Films
- Estimating Structural Support Thermal Conduction Loads
  - Load Estimating "Rule of Thumb"
  - MLI and Gold Plating Lateral Conductivity
- Estimating Thermal Radiation Loads
  - Radiation Heat Transfer in Cryogenic Applications
  - Effect of Material properties and Contaminant Layers
  - MLI Performance (Room Temperature vs Cryo)





- Donabedian, M., "Thermal Uncertainty Margins for Cryogenic Sensor Systems," AIAA-91-1426, AIAA 26th Thermophysics Conference, June 24-26, 1991, Honolulu, Hawaii, pp. 1-14 (doi: 10.2514/6.1991-1426)
- Gilmore, D.G., "Chapter 19: Thermal Testing," Spacecraft Thermal Control Handbook, Volume I: Fundamental Technologies, The Aerospace Press, El Segundo, CA, pp. 709-725.
- Ross, R.G., Jr., "Requirements for Long-life Mechanical Refrigerators for Space Applications," *Cryogenics*, Vol.30, No.3, March 1990, pp. 233-238.
- General Environmental Verification Specification for STS & ELV Payloads, Subsystems, and Components, GEVS-SE, Rev A, NASA Goddard Space Flight Center, Greenbelt, MD, 1996, 233 p.
- Ross, R.G., Jr., "Estimation of Thermal Conduction Loads for Structural Supports of Cryogenic Spacecraft Assemblies," *Cryogenics*, Vol. 44, Issue: 6-8, June - August, 2004, pp. 421-424.



**References** (Continued)



- Nast, T.C., "A Review of Multilayer Insulation Theory, Calorimeter Measurements, and Applications," *Recent Advances in Cryogenic Engineering* - 1993, ASME HTD-Vol. 267, ASME, New York (1993), pp. 29-43. (17 references).
- Ross, R.G., Jr., "Chapter 6: Refrigeration Systems for Achieving Cryogenic Temperatures," *Low Temperature Materials and Mechanisms*, Y. Bar-Cohen (Ed.), CRC Press, Boca Raton, FL (Scheduled to be published in Nov. 2015). (79 references).
- http://www2.jpl.nasa.gov/adv\_tech/ JPL website with 103 JPL cryocooler references as PDFs (R. Ross, webmaster)





- 5 to 10 YEAR LIFE with >0.95 RELIABILITY
  - This corresponds to 2,000,000 miles for an automobile with no breakdowns or servicing
  - Also requires compatibility with spacecraft environments and environmental changes over mission life
- Compatibility with Sophisticated Science Instruments
  - S/C science instruments demand low levels of vibration and EMI and highly stable temperatures
- Compatibility with S/C environments and interfaces
  - Reasonable size and weight
  - Compatible thermal interfaces and heat dissipation levels
  - Compatible electrical interfaces (power level, inrush, ripple current)
  - Compatible with digital communication interfaces



# Cryocooler Technology Drivers



- 5 to 10-year (50,000 hour) operational life mechanical mechanism
  - Huge potential for wear and mechanical fatigue (~10<sup>10</sup> cycles)
- Sensitive mechanical construction
  - Precision part fit and alignment
  - Fragile cold-end construction
  - Strong sensitivity to leakage of working fluid (Helium)
- High sensitivity to contamination
  - Lubricants or rubbing surfaces generate contaminants (Typically, No lubricants allowed in long-life coolers)
  - Cold surfaces getter contaminants from all sources
- Complex drive electronics to provide AC waveforms and closedloop control of piston motions, vibration, and coldtip temperature
  - AC drive generates vibration, EMI, and high ripple currents
- Difficult failure analysis
  - Operation obscured by pressure vessels and vacuum jackets
  - Observation and rework require resealing, decontamination, and refilling — often requiring several weeks





- Simplicity, Maturity and Broad Usage are Critical to Success
  - Simplicity = shorter devel., improved reliability, lower cost
  - Development level-of-effort needs to match sponsor/mission time window and funds allocation
  - Successful technologies generally funded by multiple sources over many-year time periods before critical maturity reached. Broad interest base key to multiple-sponsor continuity
- Development Time-Constant vs. Mission-Life-Cycle a Key Issue
  - Often requirements/need changes before cryosystem completed
  - 2x change in cryogenic loads = major redesign
- Key to Achieving a Successful Space Application
  - All S/C requirements fully factored into R&D phase (launch loads, system interfaces, temperatures, EMI, safety, etc.)
  - Analytical and test methods for flight, developed in R&D phase
  - S/C timeline matched to cooler development time/maturity level
  - Stable S/C requirements to accommodate long cooler devel. time
  - Simple program interfaces to allow focus on technical challenges



## Cryocooler R&D Development Process



- Establish detailed generic cooler requirements for target missions including system operational interfaces, environmental and operational stress levels, reliability, and life
- Develop preliminary design able to meet requirements
- Analyze performance and determine principal failure modes and failure-mechanism parameter dependencies
  - Develop and conduct Reliability Physics Analyses
  - Develop and conduct mechanism-specific Characterization and Life Tests of brassboard hardware
- Resolve or design-out requirement shortfalls
- Fabricate engineering model
- Conduct product performance verification tests
  - Full set of Qualification Tests
  - System-level functional tests
  - Multi-year Life Tests
- Feed back results into next-generation hardware and cooler Specification

## Characterization and Accelerated Life Testing Objectives and Attributes



## OBJECTIVE

• To understand and quantify the fundamental interdependencies between performance (failure level), environmental and operational stress level, hardware materials and construction features, and time

### **ADVANTAGES**

- Mechanism-level understanding achieved by selecting specialized tests and facilities targeted at specific degradation stress environments and construction material parameters
- Carefully controlled parameters (generally at parametric levels) with acceleration consistent with accurate extrapolation to use conditions

### LIMITATIONS

- Expensive and time consuming requires specialized testing equipment and modestly long test durations (2 weeks to 5 years)
- Requires multiple tests to address the total spectrum of degradation mechanisms and levels
- Number of specimens insufficient to quantify random failures



## Cryocooler Flight Development Process



- Establish detailed mission-specific cooler requirements including all system operational interfaces, environmental and operational test levels, electronic parts, reliability, and life
- Assess heritage design's ability to meet requirements and modify accordingly
- Carefully reevaluate principal failure modes and determine compliance with mission requirements
  - Reliability Physics Analyses (previously proven techniques)
  - Characterization and Life Tests of flight-like components
- Resolve or design-out requirement shortfalls
- Fabricate engineering model and flight units (typically in same build sequence)
- Conduct product performance verification tests
  - Full set of Qualification Tests
  - System-level functional tests
  - Life Tests often not done (too late, no units, no money)



## Qualification Testing Objectives and Attributes



### OBJECTIVE

- To rapidly and economically screen hardware designs and flight articles for prominent (non-wearout) failure mechanisms
- To rapidly assess the relative durability of alternative designs

#### **ADVANTAGES**

- Quick turnaround relatively inexpensive
- Relatively standard procedures allows intercomparison with historical data
- Separate tests (vibe and thermal vac) for important environmental and operational stresses aids identification of high-risk mechanisms

#### LIMITATIONS

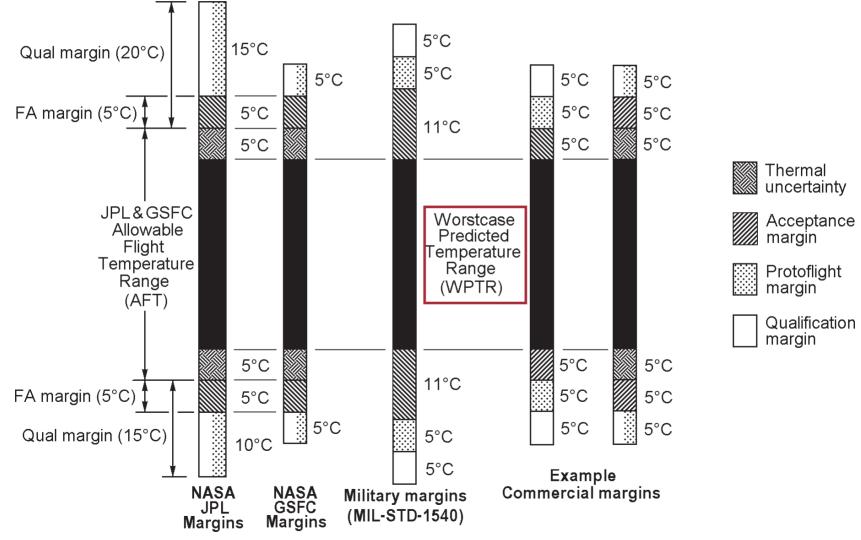
- Minimal life-prediction capability (a relative measure of robustness, generally does not quantify life attributes)
- Requires multiple tests and specialized facilities to address the total spectrum of stressing environments
- Number of specimens insufficient to quantify random failures



# **Typical Space Design and Qualification Requirements**



- Aerospace organizations follow a set of institutional requirements for thermal and structural design margins and Qualification test levels.
  - Start with Worstcase Predicted Environments (WPE) throughout the space mission (mission specific)
  - Flight Acceptance (FA), Protoflight and Qualification (Qual) test levels for the hardware are then defined with respect to WPE




# NASA

## Typical Space Thermal Design Margin Requirements



For "Room Temperature" Hardware





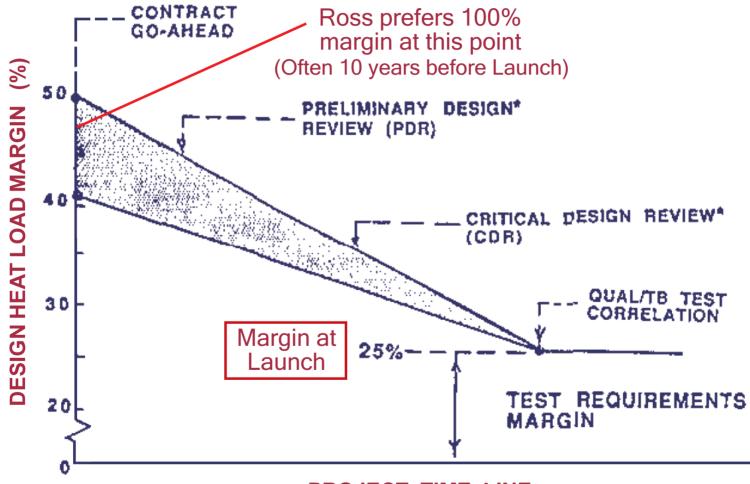
## Full-Up System-Level Testing Objectives and Attributes



## OBJECTIVE

 To accurately assess hardware functionality and reliability with special emphasis on system synergisms, interactions, and interfaces

## **ADVANTAGES**


- Complete system interfaces and operating conditions provides reliable assessment of subsystem compatibility issues and degradation mechanisms associated with system interactions or operational stresses
- Inclusion of balance-of-system hardware provides data and confidence in complete functional system

## LIMITATIONS

- Requires complete system with all important balance-of-system components and interfaces
- Occurs very late in the design cycle; changes at this point are difficult and expensive
- Significant added complexity in constructing and testing complete system

## Recommended Thermal Design/Test Margins for Cryogenic Systems

From Donabedian, M., "Thermal Uncertainty Margins for Cryogenic Sensor Systems," AIAA-91-1426, AIAA 26th Thermophysics Conference, June 24-26, 1991.



**PROJECT TIME LINE** 

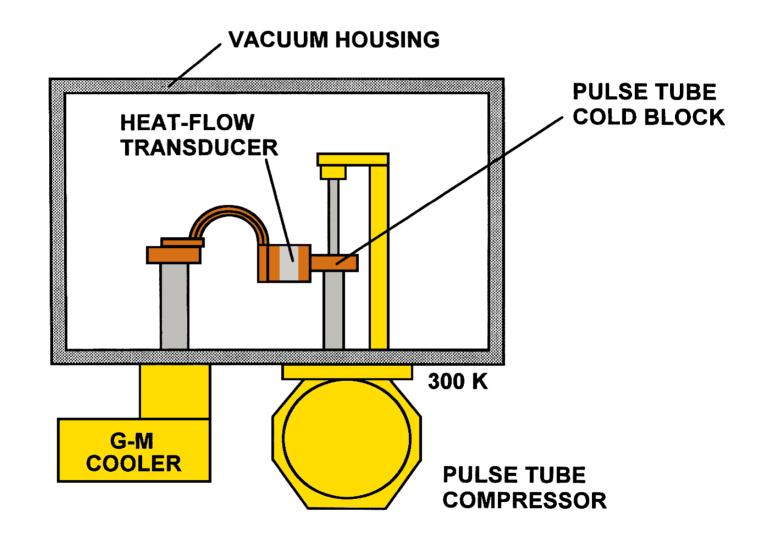


## **Estimating Cryogenic Loads** (The Critical Cryosystem Activity)



- One of the most important and difficult tasks in cryogenic system design
  - Needed to select cryocooler design
  - Needed to scope required power and heat dissipation to S/C
  - Needed to identify system thermal design drivers
  - Needed to scope the development risk and cost
- Needs to be accurate to 2x, AND stay within bounds for entire development period (perhaps 10 years)
  - Exceed 2x: generally implies new cooler system design
  - Very difficult to do for an entirely new system w/o prior history
- Key Steps
  - Derive a strawman cryogenic system design
  - Estimate the total cooling load over total operating range
  - Acquire performance data for the candidate cryocooler
  - Iterate load projections & cooler selection to get workable design
  - Validate design with detailed calculations and engineering tests



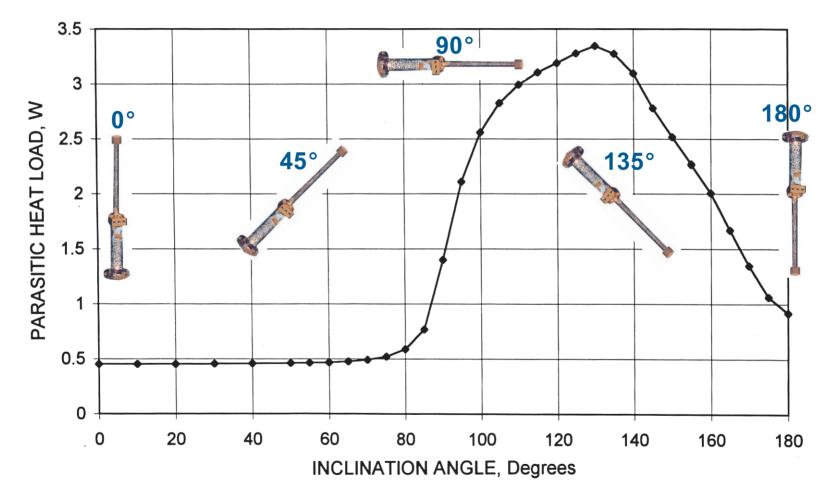

# Principal Space Cryocooler Load Contributors



- Active Loads
  - Direct I<sup>2</sup>R from detectors, motors, electronics, etc
  - Cryogenic load (liquefying gases or cooling a fluid or solid)
- Parasitic conduction loads of cryosystem interconnections
  - Conduction down plumbing and wiring including convection
  - Conduction down standby non-operating cryocoolers
- Parasitic conduction down cryosystem structural supports
  - Conduction down struts and structural members used to support the cryosystem during launch and in space
  - Requires structural support concept design
- Parasitic radiation from exterior of cryosystem
  - Strong function of the surface emittance of application materials
  - Strong function (T<sup>4</sup>) of exterior surface temperatures
  - Strongly dependent on surface cleanliness and material purity
  - Strongly dependent on MLI construction and compaction

## **Cryocooler Off-State Conduction Test Setup**



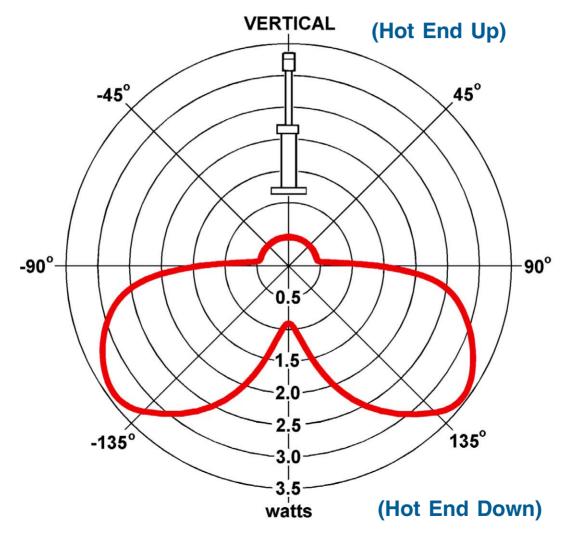





## **Coldfinger Off-State Conduction Sensitivity to Inclination Angle**



#### **TRW 6020 PULSE TUBE COOLER**

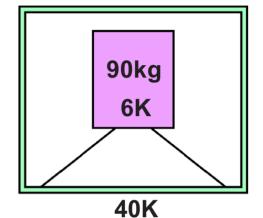





# PT Off-State Conduction at 60K vs Inclination Angle in 1-G Field



#### **TRW 6020 PULSE TUBE COOLER**




# Estimation of Thermal Conduction Loads for Structural Supports



#### OBJECTIVE

- To rapidly and economically estimate structural conduction loads in the early feasibility design phase
- To assess the quality of a structural design against historical benchmarks for achieved conductance



#### APPROACH

- Use scaling equations built on known relationships between:
  - Material conductivity and temperature
  - Launch acceleration level and assembly mass
  - Support-member cross-sections and launch acceleration level
  - Conductive load and support-member cross-section
- Scaling Equations calibrated using a database of successful flight designs.

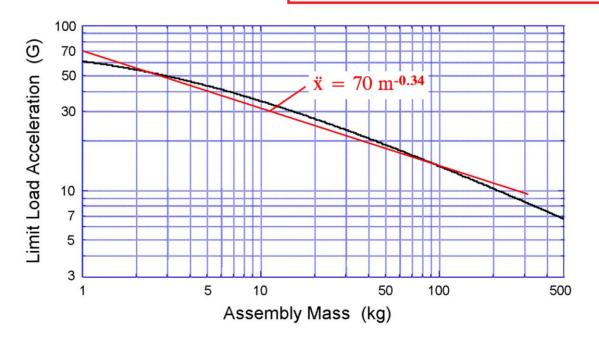




## $\mathbf{Q} = \kappa \ \Delta T \ (\mathbf{A} / \mathbf{L})$

where

- **Q** = Conducted heat (watts)
- **κ** = Average Material conductivity (watts/cm·K)
- **∆**T= Differential temperature along member length, K
- A = Structural member cross-sectional area (cm<sup>2</sup>)
- L = Structural member length (cm)


## **PROBLEM:** Need Estimate for A/L





- Stress in support material ( $\sigma$ ) = Force/Area
- For constant material stress: Area must increase ∝ Force
- Force  $\propto$  supported mass (m) x launch acceleration (  $\ddot{x}$  )
- Acceleration (  $\ddot{x}$  ) from Mass Acceleration Curve (  $\ddot{x}$   $\propto$   $m^{\text{-0.34}}$  )
- Thus:  $A/L \propto m^{-0.34} \times m$ ; i.e.

e. 
$$(A/L)_2 = (A/L)_1 \times (m_2/m_1)^{0.66}$$





## **Overall Scaling Equation for Structural Conductance**



Thus:

$$Q_2 = Q_1 (\kappa_2 / \kappa_1) \times (m_2 / m_1)^{0.66} \times (\Delta T_2 / \Delta T_1)$$

where

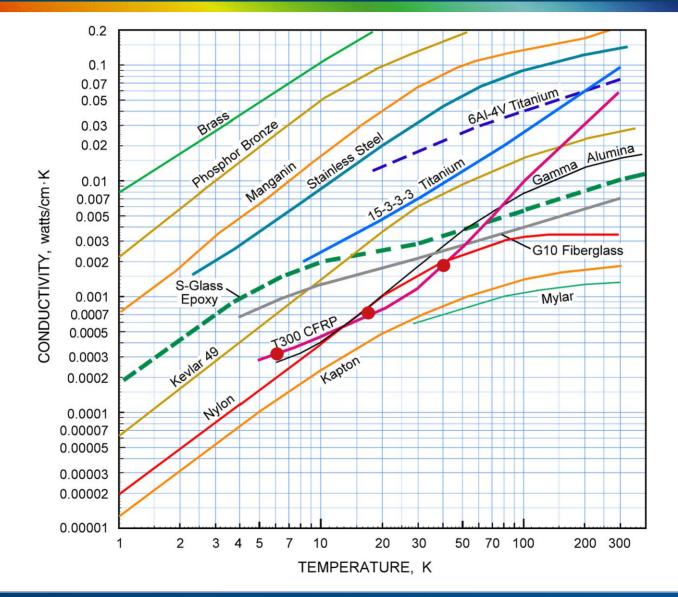
- **Q** = Conducted heat (watts)
- $\kappa$  = Average material conductivity (watts/cm·K)
- m = Supported mass, kg
- **∆**T= Differential temperature between mass and support point, K

If we define:

= Empirical scaling factor = Q<sub>1</sub> / ( $\kappa_1 m_1^{0.66} \Delta T_1$ ) = (A<sub>o</sub>/ L<sub>o</sub>)/m<sub>o</sub><sup>0.66</sup>

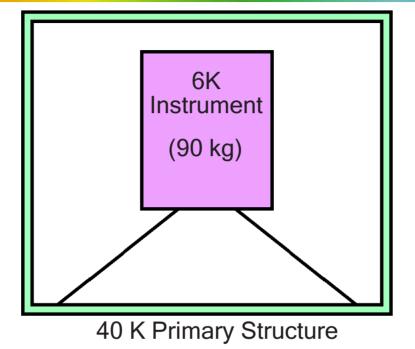
Then:

$$Q = \hat{A} \kappa m^{0.66} \Delta T$$


From Historical Examples:

 $A \approx 0.28$  for non-optimized (cantilevered) structures

 $\hat{A} \approx 0.02$  for high-efficiency axially loaded members


## Thermal Conductivity of Common Low-Conductivity Structural Materials







## Example Space Cryogenic Structure Conduction Estimation Problem

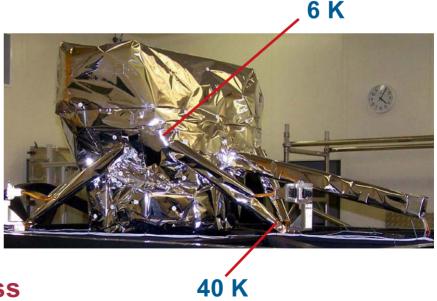


#### **PROBLEM: Estimate the structural conduction loads:**

Q = 
$$\hat{A} \kappa m^{0.66} \Delta T$$
  
= 0.02 (0.0007)(90)<sup>0.66</sup> (34)  
= 9.3 mW to 130 mW  
(corresponding to  $\hat{A}$  = 0.02 to 0.28)



# Watch Out for MLI and Gold Plating Lateral Conductivity




#### PROBLEM

- MLI and Gold Plating have relatively high in-plane conductivity
- These materials can create a thermally conductive path between hardware elements with significantly different temperatures

#### **LESSONS LEARNED**

- Be very careful about gold plating or wrapping thermally isolating members with MLI
- Conductivity of MLI Aluminized layer is about equal to that of 6061-T6 aluminum of equal thickness



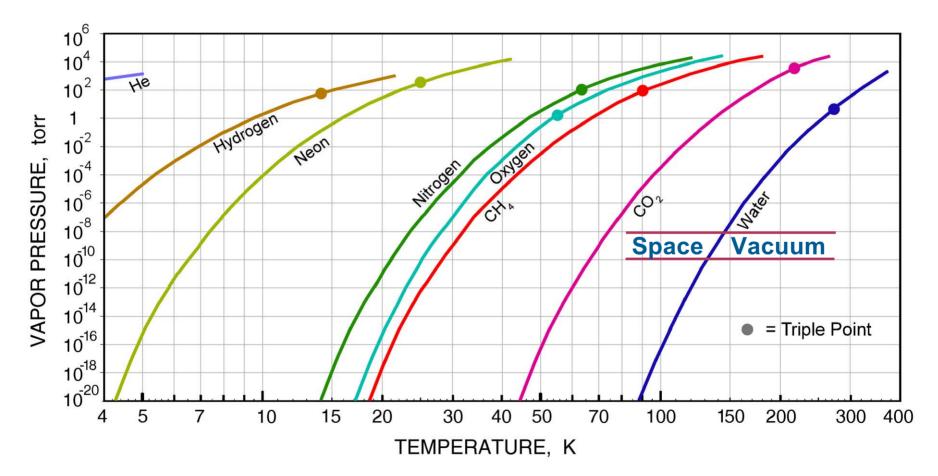


# Vacuum Level Considerations for Cryogenic Applications



Three Vacuum Level Issues:

- Gaseous Conduction from hot surfaces to cold surfaces (Free molecular gaseous heat transfer)
- Cryopumping heat loads onto cold surfaces from gases condensing on cold surfaces (heat of fusion added to gaseous conduction)
- Increased radiation heat loads on cold surfaces from high emittance condensed gases on cold surfaces


**Typical Vacuum Levels:** 

- **10<sup>-4</sup> torr:** Run of the mill vacuum chamber
- **10<sup>-4</sup> torr:** In space in open Shuttle Bay
- **10<sup>-4</sup> torr: Inside spacecraft bus in space (Ross estimate)**
- **10<sup>-6</sup> torr:** Good quality vacuum chamber
- **10<sup>-8</sup> torr:** Inside ultrahigh vacuum chamber
- **10<sup>-8</sup> torr:** Exterior to spacecraft sunlit surfaces (long term)
- **10**<sup>-10</sup> torr: Exterior to spacecraft shaded-side surfaces (long term)





#### To remain contaminant-free in space requires T>150K





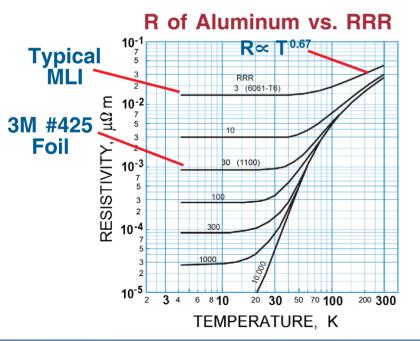


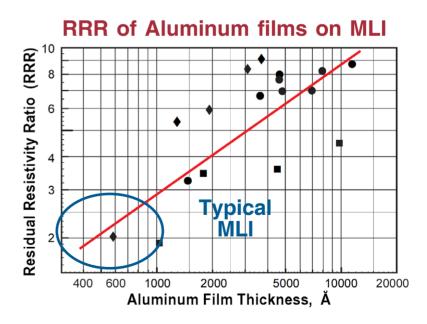
**Key Vacuum Physics Considerations:** 

- Gas motion in vacuum is free-molecular ... line-of-sight, wall-towall with very few gas-gas impacts
  - To pump it, one must intercept the molecules before they reach sensitive cold surfaces
  - Cryopumping with cold shields (<100K) is highly effective</li>
- From gas transport physics:
  - Rate of H<sub>2</sub>O arrival (thickness buildup):  $\dot{\delta}$  (µm/s) = 160 P (torr)
  - Cryopumping Heat Transfer Rate: Q (W/m<sup>2</sup>) = 34 P (torr)

So, for vacuum pressure levels of water:

| Vacuum<br>Level               | Time for<br>1 μm H₂O | H <sub>2</sub> O Cryopumping<br>Heat Transfer |
|-------------------------------|----------------------|-----------------------------------------------|
| 10 <sup>-4</sup> torr         | 1 minute             | 34,000 mW/m <sup>2</sup>                      |
| <b>10</b> <sup>-6</sup> torr  | 1.7 hours            | 340 mW/m <sup>2</sup>                         |
| 10 <sup>-8</sup> torr         | 7 days               | <b>3.4 mW/m<sup>2</sup></b>                   |
| <b>10</b> <sup>-10</sup> torr | 2 years              | 0.034 mW/m <sup>2</sup>                       |

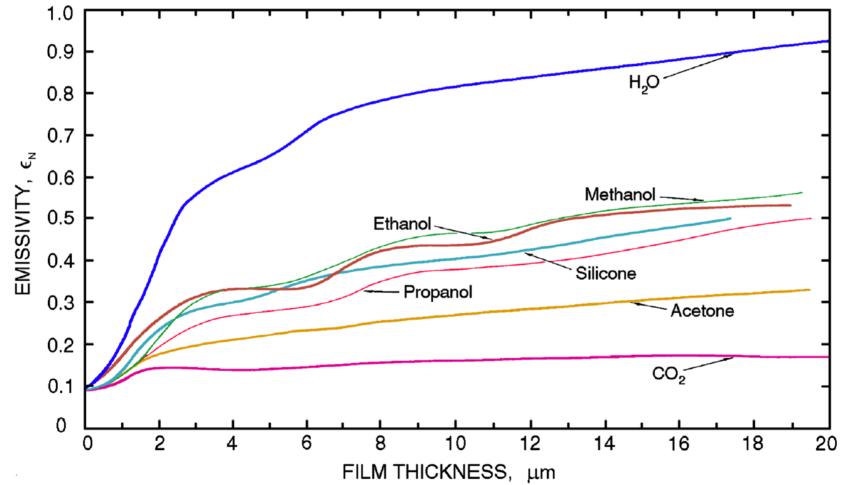




## Radiation Heat Transfer Considerations



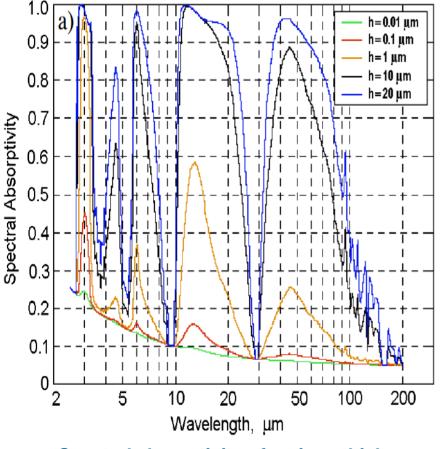
Key Issues:

- Heat transfer proportional to  $A \in (T_{Hot}^4 T_{Cold}^4) \approx A \in T_{Hot}^4$
- Emittance (∈) (IR absorptance) is dependent upon:
  - Material Surface Electrical Resistance (∈ ∝ R)
  - Surface thickness and purity/atomic structure (RRR)
  - Temperature
  - Presence of surface contaminants

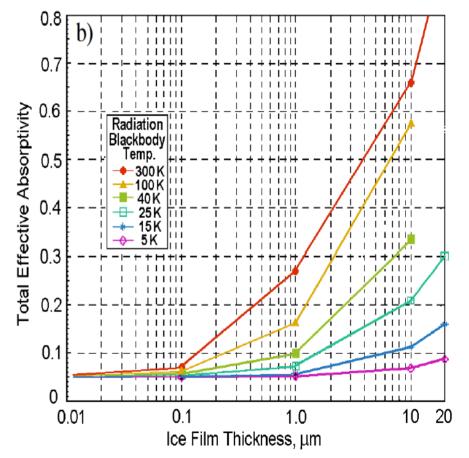





## **Emittance Dependence on Contaminant Film Thickness**








# IR Absorptivity of H<sub>2</sub>O Film (Thickness and Temperature)



 Spectral absorptivity of various thicknesses (h) of water ice



 Total IR absorptivity as a function of film thickness for incident radiation from noted blackbody temperatures.

## Estimation of Thermal Radiation Loads with Conventional MLI



#### **Classic Lockheed MLI Equation**



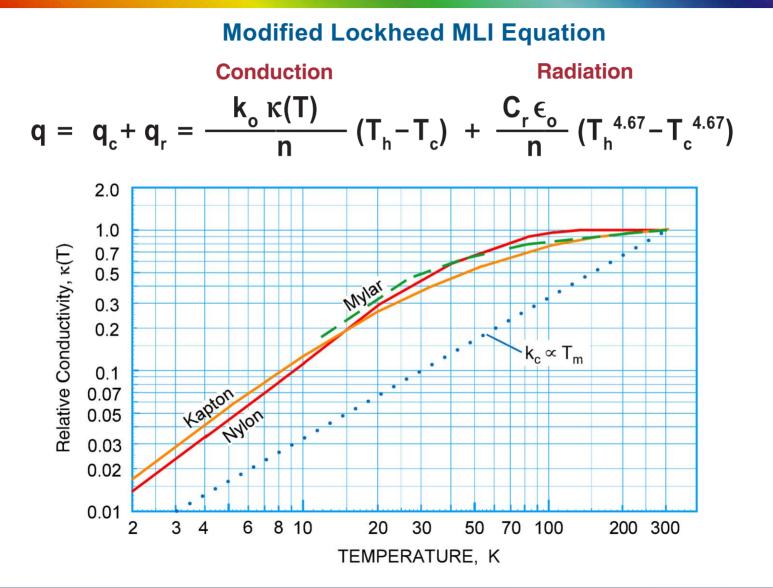
#### where

- q = total heat flux transmitted through the MLI (mW/m<sup>2</sup>)
- $q_c =$  conductive heat flux transmitted through the MLI (mW/m<sup>2</sup>)
- $q_r = radiative heat flux transmitted through the MLI (mW/m<sup>2</sup>)$

$$C_c = conduction constant = 8.95 \times 10^{-5}$$

$$C_r = radiation constant = 5.39 \times 10^{-7}$$

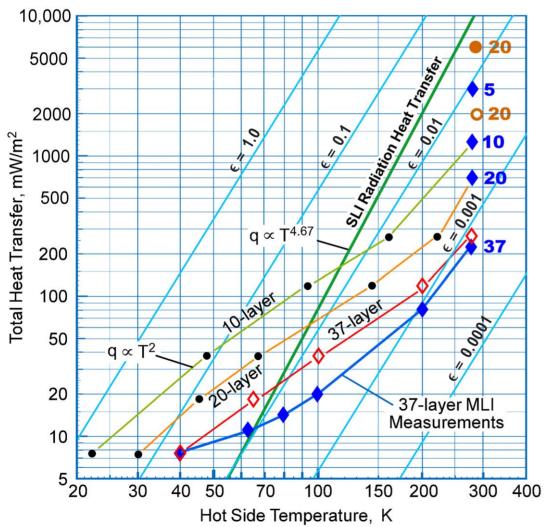
$$T_{h}^{i}$$
 = hot side temperature (K)


$$\Gamma_{c}^{"}$$
 = cold side temperature (K)

- $\epsilon_{o}$  = MLI shield-layer emissivity at 300 K = 0.031
- N = MLI layer density (layers/cm)
- n = number of facing pairs of low-emittance surfaces in the MLI system



## Estimation of Thermal Radiation Loads with Cryo MLI







## Measured Thermal Radiation Loads with Room-Temperature MLI

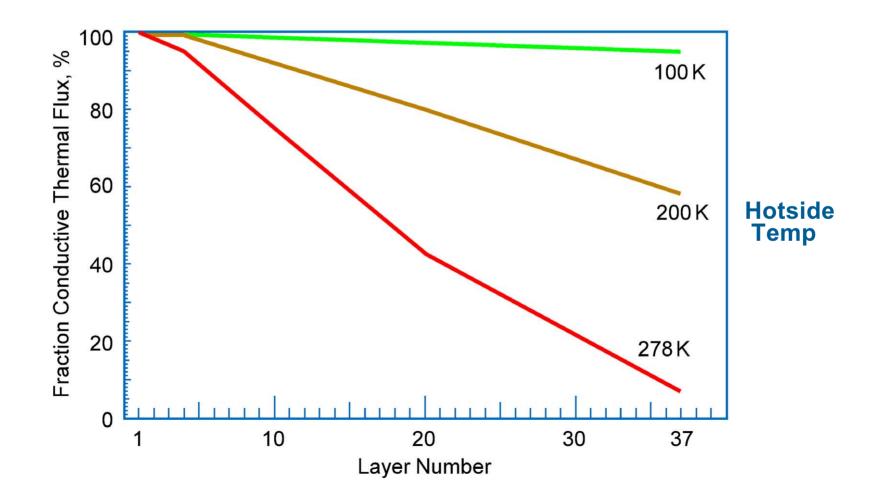


#### As a function of Hot Side Temperature



#### Key:

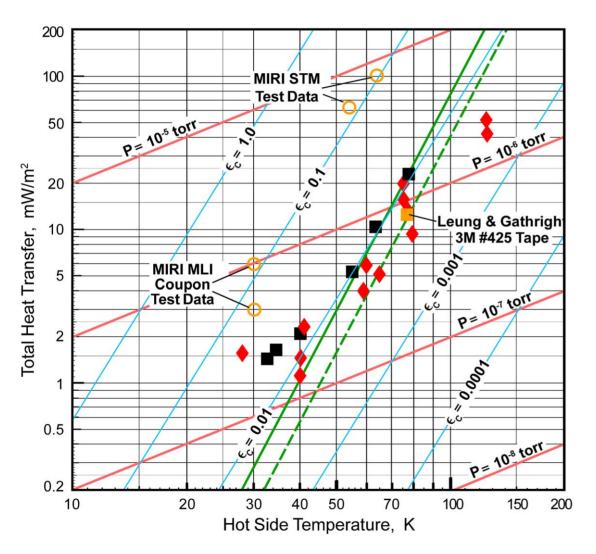



#### **Bottom Line:**

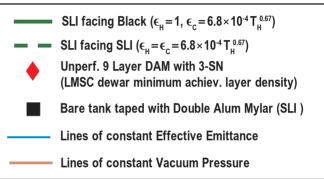
- Room-temperature MLI quickly degrades at lower Hot-Side Temps. Avoid using at T<sub>H</sub><100K</li>
- Spacecraft MLI 10x higher emittance than Dewar MLI






Lockheed 37-layer Dewar MLI ( $k_0 = 25$ )






## Measured Thermal Radiation Loads with Cryo-MLI & SLI

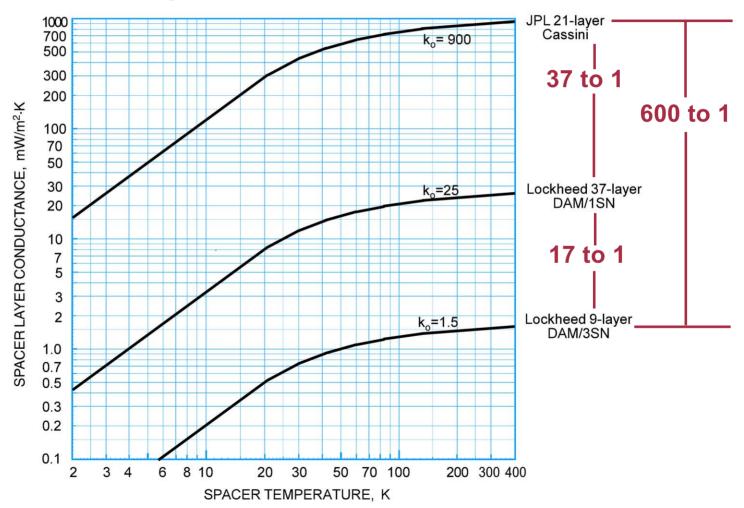




#### Key:



#### **Bottom Line:**


- Cryo Dewar MLI can improve upon SLI emittance down to 40 K Hot-Side Temps (but only by 2x)
- Spacecraft MLI has no hope at cryogenic Hot Side Temps
- 3M #425 tape is comparable to Cryo MLI
- Gas conductance seen to impact heat transfer for T<sub>H</sub>< 50 K</li>



## Measured Conductances of Various MLI Constructions



#### 600 to 1 Variability in MLI Conductance between Cryo-dewar MLI and S/C MLI





# System Design and Sizing Summary



- Designing cryogenic systems for space (or for ground) is a complex process requiring careful management
  - Accurate early identification of system requirements
  - Conservative margins applied for inevitable changes associated with improved design fidelity
  - Systematic Characterization & Qualification of system to burndown margins and reduce risk
- Cryogenic system designs typically have LARGE uncertainties
  - Structural conduction loads
  - Vacuum level (gaseous conduction & cryopumping)
  - Emittances (surface material properties & contaminant levels)
  - MLI effective emittance (conductance, unintended contact)