

2015 CEC Cryocooler Short Course

Cryocoolers for Space Applications #4

R.G. Ross, Jr.

Jet Propulsion Laboratory California Institute of Technology

Topics

- Space Cryocooler Historical Overview and Applications
- Space Cryogenic Cooling System Design and Sizing
- Space Cryocooler Performance and How It's Measured
- Cryocooler-Specific Application and Integration Example: The AIRS Instrument

June 2015

Session 4: Detailed Example The AIRS Instrument

Topics

- Overview of AIRS Instrument
 - Example Application Ground Rules and Requirements
 - AIRS Cryosystem Conceptual Design
 - Cryosystem layout and cryo loads estimation
 - Important heatsinking considerations
- Sizing the Cryocooler for the Complete Mission Life Cycle
 - BOL/EOL performance margin analysis
- Temperature Stability Requirements and Control
- Cryocooler Structural Integration Considerations
- Electrical Interface Considerations
 - Meeting magnetic field requirements with shields
 - Meeting Inrush and reflected ripple current requirements

- Ross, R.G., Jr. and Green K., "AIRS Cryocooler System Design and Development," *Cryocoolers 9*, Plenum Publishing Corp., New York, 1997, pp. 885-894.
- Ross, R.G., Jr., Johnson, D.L., Collins, S.A., Green K. and Wickman, H. "AIRS PFM Pulse Tube Cooler System-level Performance," *Cryocoolers 10*, Plenum, New York, 1999, pp. 119-128.
- Ross, R.G., Jr., "AIRS Pulse Tube Cooler System Level Performance and In-Space Performance Comparison," *Cryocoolers 12*, Kluwer Academic/Plenum Publishers, New York, 2003, pp. 747-754.
- Ross, R.G., Jr., "Cryocooler Load Increase due to External Contamination of Low- ∈ Cryogenic Surfaces," Cryocoolers 12, Kluwer Academic/Plenum Publishers, New York, 2003, pp. 727-736.

- Ross, R.G., Jr. and Rodriguez, J.I., "Performance of the AIRS Pulse Tube Coolers and Instrument—A first Year in Space," *Adv. in Cryogenic Engin.*, Vol 49B, Amer. Inst. of Physics, New York, 2004, pp. 1293-1300.
- Ross, R.G., Jr., "Active Versus Standby Redundancy for Improved Cryocooler Reliability in Space," *Cryocoolers 13*, Springer Science & Business Media, New York, 2005, pp. 609-618.
- Ross, R.G., Jr., et al., "AIRS Pulse Tube Coolers Performance Update – Twelve Years in Space," *Cryocoolers 18*, ICC Press, Boulder, CO, 2014, pp. 87-95.
- See the AIRS instrument web site for up-to-date descriptions of the science returns from the AIRS instrument and its science team members: http://www-airs.jpl.nasa.gov/
- http://www2.jpl.nasa.gov/adv_tech/ JPL website with 103 JPL cryocooler references as PDFs (R. Ross, webmaster)

AIRS (Atmospheric Infrared Sounder) is a NASA Earth Science Instrument

- AIRS is an Atmospheric Infrared Sounder
 - Design: Highly stable IR spectrometer spanning visible to 15.4 μm bands with Focal Plane cooled to 58 K
 - Launched: May 2002
 - Still in orbit gathering data
 - Science Output:
 - Air Temperature Distributions
 - Atm Gas Concentrations (CO, CO₂, CH₄, H₂O) over Planet

Launched on NASA Aqua Spacecraft in May 2002

Atmospheric Infrared Sounder (AIRS) Instrument

AIRS Cryosystem Ground Rules and Requirements

- Totally redundant cryocoolers—for enhanced reliability
- No heat switches—to avoid increased complexity, cost and unreliability
- Ambient heat rejection to spacecraft-supplied cold plates operating between 10 and 25°C
- Cooler drive fixed at 44.625 Hz, synchronized to the instrument electronics
- Cold-end load (focalplane) mechanically mounted and aligned to the 150 K optical bench with a maximum vibration jitter on the order of 1 μm
- Focalplane calibration (for temperature, motion, etc.) every 2.67 sec (every Earth scan)
- Cooler input power goal of 100 watts (22 to 35 volts dc), and mass goal of 35 kg
- Cooler drive electronics fully isolated (dc-dc) from input power bus; EMI consistent with MIL STD 461.

Detector Technologies and Temperatures

Radiation Type	Wavelength (microns)	Blackbody Temp. (K)	Detector Technology	Detector Oper. Temp. (K)	
γ-rays	10 ⁻⁵	3 ×10 ⁸ K	Ge Diodes	80 K	
γ-rays	10 ⁻⁴	3 ×10 ⁷ K	Ge Diodes	80 K	
x-rays	10 ⁻³	3 ×10 ⁶ K	micro	0.050 K	
x-rays	10⁻²	3 ×10 ⁵ K	calorimeters	0.050 K	
UV	0.1	30,000 K	CCD/CMOS	200-300 K	
visible	1	3000 K	CCD/CMOS	200-300 K	
IR	2	1500 K	HgCdTe	55-130 K	
IR	5	5 600 K HgCdT		55-120 K	
LWIR	10	300 K	HgCdTe	35-80 K	
LWIR	15	200 K	HgCdTe	35-60 K	
LWIR	20	150 K	Si:As	6 -10 K	
LWIR	50	60 K	Ge:Ga	2.0 K	
LWIR/µwav	es 100	30 K	Ge:Ga	1.5 K	
microwaves	s 200	15 K	Bolometers	0.100 K	
microwaves	s 500	6 K	Bolometers	0.100 K	

INTEGRAL

HST

AIRS

SIRTF

Operating Regions of Cryocoolers vs Detector Cooling Requirements

Candidate Stirling Cryocooler Redundancy Approaches

AIRS Cryosystem Initial Conceptual Design with Stirling Cryocoolers

Possible Issues

- Displacer heatsinking
- Displacer vibration
- Displacer reliability

Hughes CSE Cryocooler Mounted in Heat Sink Assemblies

Rapid Development of the Pulse Tube Occurred Just in Time for AIRS

Specific Power at 58 K

AIRS Cryosystem Conceptual Design with Pulse Tube Coolers

Possible Issues

- Optics Contamination
- Pulse Tube Contamination
- Horizontal PTs
- PT/OB relative motion

Three Vacuum Level Issues: Gaseous Conduction, Cryopumping loads, Increased Emittance from contaminant films

Typical Vacuum Levels Achieved:

- **10-8 torr:** Exterior to spacecraft sunlit surfaces (short term)
- 10⁻⁹ torr: Exterior to spacecraft sunlit surfaces (long term)
- **10**⁻¹⁰ torr: Exterior to spacecraft shaded-side surfaces (long term)

Contamination Implications:

Vacuum Level	Time for 1 μm H₂O	H ₂ O Cryopumping Heat Transfer
10 ⁻⁶ torr	1.7 hours	340 mW/m ²
10 ⁻⁸ torr	7 days	3.4 mW/m²
10 ⁻⁹ torr	70 days	0.34 mW/m ²
10 ⁻¹⁰ torr	2 years	0.034 mW/m ²

AIRS Optical Bench Contamination Risk Assessment

Optical Bench BOL Design: 145 K (10^{-8.5} torr): Contamination Likely Optical Bench EOL Design: 160 K (10⁻⁶ torr): Looks Good Pulse Tube Design: 55 K (10⁻⁵⁰ torr): Contamination Very Likely

Massive Heat Sinks Added to AIRS Pulse Tubes

Summary of AIRS Cooler System Thermal Gradients

AIRS Cryosystem Cold Link Design with Pulse Tube Coolers

AIRS Cold Link Assembly

Cryogenic Conductivity of High Conductivity Materials

Breakdown of AIRS Coldlink Assembly Thermal Resistances

ITEM	Resistance (K/W)
Focal plane to Sapphire rod	1.57
Conduction down Sapphire rod	0.16
Sapphire rod to moly coupling	0.34
Resistance across shrink-fit joint	0.40
Resistance across flex braid	1.35
Coldblock contact resistance	0.30
Total focal plane/pulse tube thermal resistance	4.12 K/W

Summary of AIRS Instrument Cryocooler Loads

FOCAL PLANE: 58 K, OPTICAL BENCH: 145 K BOL, 160 K EOL

ITEM		Load (mW)		
		EOL		
Focal Plane Radiation Load from OB	73	108		
Focal Plane Electrical Dissipation	193	193		
Focal plane Lead Wire Conduction	98	118		
Focal plane Structural Support Conduction	129	158		
Radiation to Coldlink from Optical Bench	17	24		
Radiation to Coldlink from Vacuum Housing	177	195		
Off-state Conduction of Redundant Cryocooler	486	496		
Total Cryocooler Load	1173	1292		

AIRS Predicted Cryocooler Thermal Performance

AIRS Cryocooler Electronics Efficiency

AIRS BOL/EOL Performance Margin Analysis

PARAMETER	Unit	BOL Perfor- mance	200 mW Load Increase	15°C Heatsink Increase	Cooler Wearout Degrad.	EOL Perfor- mance
Focalplane Temperature	K	58	58	58	58	58
Total Cooler Cold-End Load	W	1.07	1.27	1.07	1.07	1.27
Cooler Cold-tip ΔT to FP (3 K/W)	K	3	3.4	3	3	3.4
Cooler Cold-tip Temperature (T _c)	K	55	54.6	55	55	54.6
Heat Rejection Coldplate Temp	K	290	290	305	290	305
Expander to Coldplate ΔT (0.16 K/W)	K	9.8	11.2	10.6	12.0	16.8
Comp. to Coldplate ΔT (0.05 K/W)	K	3.0	3.5	3.3	3.8	5.3
Avg. Cooler Rejection Temp (T _R)	K	296	297	312	298	316
T_{c} Correction for $T_{B} \neq 300K$ (0.17 K/K)	K	+0.7	+0.5	-2.0	+0.3	-2.7
T _c Correction for Cooler Wearout	K	0	0	0	-5.0	-5.0
Total Cold-tip Temp Correction	K	+0.7	+0.5	-2.0	-4.7	-7.7
Effective 300K Cold-tip Temp (T _{FC})	K	55.7	55.1	53.0	50.3	46.9
Cooler Specific Power at T _{FC}	W/W	57	55	62	72	83
Cooler Compressor Power (P)	W	57	67	65	75	101
Total Input Power (P/0.9 + 10)	W	73	84	82	93	122
Compressor Stroke	%	64	68	67	70	80

- Meet inrush and reflected ripple current requirements
- Accommodate broad input voltage ranges as compounded by high ripple current of cooler
- Suppress EMI to low levels consistent with MIL-Std 461 and accommodate MIL-Std 461 susceptibility levels
- Provide high isolation from ground loops: case isolated from ground; possible dc-dc isolation from power bus
- Provide digital data interface for communication of commands and transmission of measured parameters & performance data

AIRS Cryocooler Electronics Conducted Ripple Current

Prototype Magnetic Shields Used in Magnetic Shielding Studies

AIRS Compressor AC Magnetic Fields (With and Without Mag Shields)

AIRS Flight Pulse Tube Coolers

Cooler Load Point for 2-Cooler vs 1+Standby Operation

Cooler Drive Level Summary for 12 Years of Operation

AIRS Cooler Load Point Since Two-Cooler Operation Began

• AIRS was the first space instrument to commit to a pulse tube cryocooler and served as a very successful example

Summary

- Cooler performance characterization
- Dealing with Heat Rejection and Coldlink design
- Achieving tolerable generated vibration and EMI levels
- During the 20 years since the AIRS conceptual design was developed, we've learned a great deal more about a number of integration challenges:
 - Two-cooler operational redundancy trade-offs
 - Space vacuum levels and contamination sensitivity
 - Cryo MLI performance
 - Internal ripple current suppression
 - Lighter and more efficient 2-stage coolers that can accommodate both the 150K optical bench load and the 58 K focal plane load
- Bottom Line: Space cryocoolers continue to evolve and we continue to learn how to improve their system performance