[4.2.2.1.3] 350 keV FEL Gun Studies
Author/caretaker: D. Kehne
Date:             12/23/96
Rev:              1.0

GOALS

MUST
	  Achieve "nominal" beam parameters for FEL operation
		- 350 keV
		- 135 pC
		- 8 p mm-mrad (norm. rms)
		- 50-70 degrees
		- 20-40 keV-degrees 
	  Achieve stable operation at 350 kV
	  Develop a procedure to reproduce beam conditions using only 
		diagnostics that will be in the FEL injector

SHOULD
	  Operation at >350 kV  
	  Perform parameter studies to understand gun physics
		-  Rap 0.5, 1.0, and 2.0 mm
		-  Charge/bunch from ~0.1 - 250 pC
	  Emittance measurements vs solenoid settings 

If done properly,  the last item satisfy all other goals except operation at 
voltages > 350 kV.


Comparison of ITS and FEL Injector Diagnostics

Diagnostic			In ITS?		In 10 MeV ITS?
Laser Spot profile at cathode	yes		yes
Solenoid centering		yes		yes
Beam Current 			yes		?
Light Box Harp			?		?
ax, bx, ex at 350 keV		yes		no
DE vs f				yes		no
Bunch length at 350keV		yes		no
ef				yea, maybe	no
Spot before unit		no		yes
10 MeV diagnostics		no		yes	
		


  Need harp scans at light box during 350 keV runs to develop a reference 
	for later 10 MeV studies.  
  Does/Will gap monitor work?  
  Must have sufficient data base of runs at 350 keV to be somewhat 
	confident of 10 MeV ITS beam.   


Outline of Experimental Plan
I.  Calibration/Testing of equipment (1 week)  
	A.  Hardware checkout
	B.  Cavity gradient vs kick calibration
	C.  Beam with cavity tests
	D.  Determine setting lens 2 that produces minimum spot size at the 
		slit
	E.  Determine setting lens 2 that produces minimum spot size at 
		straight ahead harp
	F.  Determine minimum DE for low charge bunches
II.  Beam Experiments at 250 keV - Cavity effects (2-3 days)
	A.  Several preselected points matching previous 250 keV data
	B.  Look for significant discrepancies (making emittance worse)
III.  Parameter Studies (24 hours per aperture setting)  
	A.  Rap = 0.5, 1.0, and 2.0 mm
	B.  Q from 0.3 pC to 400 pC
	C.  Data
		1.  Size at Light Box
		2.  Transverse emittance and Energy Spread at slit
		3.  Bunch Length at Aperture
		4.  Energy Tilt/Longitudinal Emittance
		5.  Beam current
IV.  Lifetime studies
	A.  Average will be high when aperture is in
	B.  The cathode will be in a hostile environment

Work Remaining to be Done
	  Automation of the longitudinal data taking (2 weeks)
	  Data analysis (2 weeks)
	  Finalizing parameter sets (1 week)
		-  Beam conditions
		-  Lens settings
		-  Error analysis/noise levels of each set
		-  Poisson comparison of new solenoid
	  Finish beam line installation  
	  Install cathode stalk (~1st week of January) 
	  Bake/activation  ~3 weeks  
Estimated time for first beam:  Feb. 1

Summary of Parameters - PARMELA
Ipeak = 0.01 Amps,  sr = Rmax
st [psec]  Rmax[mm] Q [pC] 4sf[deg] 4sE[keV] 4ef[keV-deg] exrmsN[p mm-mrad] 4efslice[keV-
deg]

15	0.5	0.38	33	0.35	1.5	0.14	0.3
25	0.5	0.63	54	0.31	2.5	0.15	0.3
15	1.0	0.38	33	0.48	2.5	0.3	0.4
25	1.0	0.63	54	0.46	4.2	0.3	0.4
15	2.0	0.38	33	0.8	4.7	0.6	0.8
25	2.0	0.63	54	0.81	7.9	0.6	0.8


Ipeak = 0.27 Amps,  sr = Rmax

st[psec] Rmax[mm] Q[pC]	4sf[deg] 4sE[keV] 4ef[keV-deg] exrmsN[p mm-mrad] 4efslice[keV-deg]

15	0.5	10	37.3	3.2	7.0	0.6	0.8
25	0.5	16.7	58	2.7	12	0.7	0.3
15	1.0	10	36	3.33	8.2	0.7	0.3
25	1.0	16.7	57	2.84	 13	0.8	0.5
15	2.0	10	35	3.0	8.0	0.9	0.8
25	2.0	16.7	56	2.6	13.4	1.0	0.7










Ipeak = 1.0 Amps,  sr = Rmax

st[psec] Rmax[mm] Q[pC]	4sf[deg] 4sE[keV] 4ef[keV-deg] exrmsN[p mm-mrad] 4efslice[keV-deg]

15	0.5	38	45	6.3	10.4	1.8	0.5
25	0.5	63	65	6.1	20	2.4	0.5
15	1.0	38	42	7.3	14	1.7	0.5
25	1.0	63	63	6.9	25.5	2.0	0.5
15	2.0	38	40	7.5	16	2.1	0.9
25	2.0	63	61	7.4	30.4	2.4	1.0


Ipeak = 2.7 Amps,  sr = Rmax

st[psec] Rmax[mm] Q[pC]	4sf[deg] 4sE[keV] 4ef[keV-deg] exrmsN[p mm-mrad] 4efslice[keV-deg]

15	0.5	100	 55	9.5	16	11	0.9
25	0.5	167					
15	1.0	100	 52	11.5	18	4.0	0.5
25	1.0	167	 72	12	35	5.4	0.8
15	2.0	100	 47	13	23	4.0	1.0
25	2.0	167	 69	13.3	45	4.8	1.0


Ipeak = 6.7 Amps,  sr = Rmax

st[psec] Rmax[mm] Q[pC] 4sf[deg] 4sE[keV] 4ef[keV-deg] exrmsN[p mm-mrad] 4efslice[keV-deg]

15	0.5	250	 SCR	-	-	-	-
25	0.5	416	 SCR	-	-	-	-
15	1.0	250	65	17	36	20	1.3
25	1.0	416	 72	12	35	5.4	
15	2.0	250	 60	20	33	8.5	1.3
25	2.0	416	 81	21	59	11	1.4

Q = 135 pC,  sr = Rmax

st[psec] Rmax[mm] Q[pC] 4sf[deg] 4sE[keV] 4ef[keV-deg] exrmsN[p mm-mrad] 4efslice[keV-deg]
15	0.5	135	 SCR	-	-	-	-
25	0.5	135	71	8.8	26	11	0.5
15	1.0	135	55	13	19	6	0.6
25	1.0	135	69	10	30	4	0.6
15	2.0	135	51	15	26	5	0.7
25	2.0	135	66	11	37	4	1.0




Error Estimates


Available power from kicker:  450 W
Bunch length:  

Nominal beam size at straight-ahead harp:  4sx  1 mm
Bunch lengths to be measured range from 33 to 80

At 200 W, deflection at harp is 5.4/mm.
	-  For 60 4s bunch length, 4sx  11 mm.  (10-to -1)  
	-  ~5 degree resolution

At 400 W, deflection at harp is 3.8/mm.
	- For 33 4s bunch length, 4sx  8.7 mm.  (8.8-to-1)  
	- ~4 resolution


Longitudinal Emittance

Nominal beam size at straight-ahead harp:  4sx  0.5 mm
At 400 W, deflection at slit is 9/mm.

E-f tilt error

	Finite beam size at slit causes 4 of bunch to contribute to energy 
		spread of sampled beamlet.  

	This is a problem when there is significant energy tilt.
		Nominal 4s energy spreads to measured range from 0.3 keV to 
			1 keV
		To make energy error due to tilt small, want energy tilt error 
			<0.1 keV

	This occurs when when energy tilt slope ts is 
		ts[keV/degree]*4 < 0.1 =>  ts<0.025 keV/degree

Nominal tilts range from 0.1 keV/degree to 0.25 keV/degree

Can be deconvoluted

Error due to misalignment
0.05 keV -- assuming 0.3 error in tilts of slit and harp


Error due to stray field gradients
0.05 keV
0

Error due to Energy spread induced by cavity
0.2 keV  -- assuming < 1 mm diameter spot size at cavity 

Finite Slit Size Error 
0.1 keV

_________________________________________________
Additional questions:
1.  What is sensitivity to HVPS droop?
2.  What is actual laser pulse length?
3.  What is sensitivity of longitudinal emittance to solenoid?