Extreme High Vacuum: The Need, Production, and Measurement

Marcy Stutzman, Philip Adderley, Matt Poelker
Thomas Jefferson National Accelerator Facility (Jefferson Lab)

Polarized Electron Gun Group
Newport News, Virginia
Run by JSA for the US DOE
What is XHV

- Extreme High Vacuum
 \[P < 1 \times 10^{-10} \text{ Pa} = 1 \times 10^{-12} \text{ mbar} = 7.5 \times 10^{-13} \text{ Torr} \]
- Baked, metal systems, low outgassing, coatings to reduce outgassing
- Combinations of pumping
 - Ion, Getter, Cryo, Titanium Sublimation, Turbo
- Measurement: Ionization gauges
Ultimate Vacuum

- Steady decrease interrupted by gauge limitations 1920-1950
- Bayard-Alpert gauge introduced in 1950
- Plateau $\sim 1 \times 10^{-14}$ Torr for nearly 3 decades again

![Graph showing the history of ultimate vacuum with key points and dates](image-url)
Who needs XHV

- **Storage Rings**
 - CERN ISR:
 - beam lifetimes > 10 hours, pressure < 1×10^{-12} Torr
 - Vacuum in interaction region in the 10^{-14} Torr range
- **Large Detector Systems**
 - KATRIN (later in this session)
- **Surface Science applications**
 - Alkali metals on surfaces
 - surface contaminates within ~1 hour
 - Surface X-ray diffraction at synchrotrons, He scattering
 - low signal, long collection times
 - Dynamical surface analysis
- **High current polarized photo-electron guns**
Jefferson Lab

- CEBAF: Nuclear physics electron accelerator laboratory and Free Electron Laser (FEL)
- User community of 2000+ physicists
- GaAs Photoelectron gun (100 kV, 200 µA, 85% polarization) delivers beam simultaneously to three experimental halls
- Nuclear physics gun on up to 310 days/year, 24 hours/day
- CEBAF pressures ~1.2x10^{-11} Torr
- Guns pumped with combination of NEG and ion pumps
- FEL gun operates 350 kV, 9 mA unpolarized electron gun
Photocathode Lifetime

- Quantum Efficiency (yield) of GaAs photocathode decays
- Lifetime of inversely proportional to vacuum conditions
 - Residual gas ionized
 - Ion backbombardment damages
 - Crystal structure
 - Surface chemistry
- Lifetime very good: ~200 Coulombs, 85% polarization
- Future applications: higher currents
 - Electron/ion colliders: >1 mA polarized
 - Novel light sources: 100 mA unpolarized
 - Electron cooling applications: 1 A+, unpolarized
 - RF photoguns – GaAs photocathodes

Laser spots

~2.5E-11 Torr
~5.0E-11 Torr
>15.0E-11 Torr
Materials and Preparation

• Low outgassing
 – Stainless Steel
 – Titanium alloys
 – Aluminum
 – OFHC Copper, Cu/Be alloys
• 300 series austenitic steels (304L, 316L, 316LN)
 – low carbon, 316 series adds Mo for strength
• Coatings to reduce outgassing
• Coatings to add pumping
Hydrogen reduction through heating

Calder & Lewin 1967 calculate time and temperature to reduce stainless steel outgassing

Fick’s law governs diffusion of hydrogen from bulk metal

- Initial concentration
- Time
- Temperature
- Wall thickness
- Surface recombination

<table>
<thead>
<tr>
<th>t (sec)</th>
<th>D ($\text{cm}^2 \text{ sec}^{-1}$)</th>
<th>T ($^\circ\text{C}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1 \cdot 0 \times 10^6$ (11 days)</td>
<td>$3 \cdot 5 \times 10^{-6}$</td>
<td>300</td>
</tr>
<tr>
<td>$8 \cdot 6 \times 10^4$ (24 hours)</td>
<td>$3 \cdot 8 \times 10^{-7}$</td>
<td>420</td>
</tr>
<tr>
<td>$1 \cdot 1 \times 10^4$ (3 hours)</td>
<td>$3 \cdot 0 \times 10^{-6}$</td>
<td>570</td>
</tr>
<tr>
<td>$3 \cdot 6 \times 10^3$ (1 hour)</td>
<td>$9 \cdot 0 \times 10^{-6}$</td>
<td>635</td>
</tr>
</tbody>
</table>
Outgassing Rates for SS

Table 1
Some published data of outgassing rates q_{out} of stainless steel chamber walls after different pre- and in situ treatments.

<table>
<thead>
<tr>
<th>Preprocessing</th>
<th>Processing in situ</th>
<th>T (°C)</th>
<th>t_0 (h)</th>
<th>F_0</th>
<th>T (°C)</th>
<th>t_0 (h)</th>
<th>F_0</th>
<th>ΣF_0</th>
<th>q_{out} (mbar·L/s·cm2)</th>
<th>Refs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>950</td>
<td>2</td>
<td>39.6</td>
<td>150</td>
<td>168</td>
<td>0.12</td>
<td>39.7</td>
<td>2.5 x 10$^{-14}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>400 (air)</td>
<td>38</td>
<td>9</td>
<td>150</td>
<td>168</td>
<td>0.12</td>
<td>9.1</td>
<td>1.1 x 10$^{-14}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>390</td>
<td>100 (air)</td>
<td>3.3</td>
<td>150</td>
<td>24a</td>
<td>0.03</td>
<td>0.03</td>
<td>3 x 10$^{-12}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>48</td>
<td>0.1</td>
<td>150</td>
<td>24</td>
<td>0.03</td>
<td>4.0</td>
<td>1.1 x 10$^{-14}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>950</td>
<td>2</td>
<td>43</td>
<td>200</td>
<td>48</td>
<td>0.1</td>
<td>0.1</td>
<td>4 x 10$^{-12}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>400 (air)</td>
<td>72</td>
<td>7.7</td>
<td>250</td>
<td>72</td>
<td>0.46</td>
<td>0.46</td>
<td>3.8 x 10$^{-12}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>550</td>
<td>72</td>
<td>46</td>
<td>250</td>
<td>72</td>
<td>0.46</td>
<td>46.5</td>
<td>4 x 10$^{-15}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>404</td>
<td>1.4</td>
<td>70</td>
<td>200</td>
<td>72</td>
<td>3</td>
<td>70</td>
<td>3 x 10$^{-16}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>72</td>
<td>3</td>
<td>200</td>
<td>72</td>
<td>3</td>
<td>70</td>
<td>1 x 10$^{-13}$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a Estimated, since the exact in situ bake-out time was not specified.

Meaning of the columns: temperature (T) and duration (t_0) of pre- and in situ treatments and outgassing rate (F_0) of the wall material.

Other exceptional outgassing rates (in Torr·L/s·cm2)

- **BeCu alloy:** 4×10^{-16}

- **Ti/steel alloy:** 7.5×10^{-15}

P. Marin Virgo, Vacuum 1998

M. Bernardini Virgo, JVSTA 1998

H. Hseuh Brookhaven JVSTA 1998

G. Messer, 1977

V. Nemanič thin walls JVSTA 1999

V. Nemanič JVSTA 2000
JLab Preparation

- 304 SS vacuum chambers
 - Untreated
 - Electropolished and vacuum fired 900°C 4 hours
- Baking
 - 30 hours, 250°C
 - Unfired chamber
 1x10⁻¹² Torr·L/s·cm²
 ~13 bakes
 - Vacuum fired chamber
 8.9x10⁻¹³ Torr·L/s·cm²
 3 bakes

Achieve modest outgassing rate for 304SS
Lower rates possible with better grade steel
Add heat treatment after final welding
XHV surface coatings

TiN, SiO₂, Chromium oxide
Diffusion barrier for hydrogen
Affect surface recombination
Can also reduce beam induced pressure rise in storage rings
See session VT-WeM

<table>
<thead>
<tr>
<th>Chamber #</th>
<th>Q (Torr·cm⁻³)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>TiN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#2A</td>
<td>2.5E-13</td>
<td>in-situ 250°C bake, without TiN coating</td>
</tr>
<tr>
<td></td>
<td>(120 hours, post-bake)</td>
<td></td>
</tr>
<tr>
<td>#3A</td>
<td>2.1E-13</td>
<td>in-situ 250°C bake, with high pressure TiN coating</td>
</tr>
<tr>
<td></td>
<td>(96 hours, post-bake)</td>
<td></td>
</tr>
<tr>
<td>#5B</td>
<td>1.9E-13</td>
<td>in-situ 250°C bake, with low pressure TiN coating</td>
</tr>
<tr>
<td></td>
<td>(72 hours, post-bake)</td>
<td></td>
</tr>
</tbody>
</table>

P. He, H.C. Hseuh, M. Mapes, R. Todd, N. Hilleret
Outgassing for SNS ring material with and without TiN coatings

K. Saito et al
JVSTA 13 (1995) 556
SiO$_2$ Coatings

- SiO$_2$ coated 304 SS (Restek prototype)
- SiO$_2$ coating applied to inside and outside, chemically stripped
- Accumulation method with spinning rotor gauge
- Outgassing no better with SiO$_2$ coating
 - Prototype coatings
 - Chemical stripping process
 - Increased surface roughness

Outgassing: SiO$_2$ coated 304 SS

<table>
<thead>
<tr>
<th></th>
<th>Thin</th>
<th>Thick</th>
</tr>
</thead>
<tbody>
<tr>
<td>in/out</td>
<td>1.0E-12</td>
<td>2.0E-12</td>
</tr>
<tr>
<td></td>
<td>1.5E-12</td>
<td>2.5E-12</td>
</tr>
</tbody>
</table>

JLab: Y. Prilepskiy, G.R. Myneni, P.A. Adderley, M.L. Stutzman
Cr$_2$O$_3$ Surface passivation

304L Surface passivation
Vacuum fire 450°C, 24 hours
1x10$^{-9}$ Torr O$_2$ partial pressure
5x10$^{-7}$ Torr total pressure

Cr$_2$O$_3$ is one component of air fired, low outgassing materials (VIRGO, LIGO)

K.R. Kim et al
Proceedings of APAC
2004 Gyeongju, Korea
Distributed beamline pumping

- Beamlines coated with getter material (Ti/Zr/V)
 - activated through bakeout temperature ~200°C
 - No conductance limitation
 - Reduces beam induced pressure rise

Distributed Ion pump: Y.Li et al., JVSTA 15 (1997) 2493.

ESRF insertion device

RIKEN from SAES literature
JLab’s NEG coating

- Ti/Zr/V NEG coating
- Sputtering without magnetron enhancement
- Beamline exiting CEBAF electron guns NEG coated since 1999
 - Enhanced photocathode lifetime: now achieving lifetime ~200 Coulombs
- High voltage chamber for new load locked gun coated

EDS analysis of getter coating composition

25% Ti
50% V
25% Zr
Load Locked Electron Gun

NEG coated HV chamber
Vacuum measured: $\sim 1.2 \times 10^{-11}$ Torr
Lifetime doubled
5-10 mA, 100 keV electron beam
Pumps for XHV

- **Ion pumps**
 - Ion pump performance vs. voltage
 - Ion pump current monitor at UHV pressures
 - Getter coating ion pumps

- **NEG**
 - Great pumping for hydrogen, also pumps CO, N₂
 - Don’t pump methane, noble gasses
 - Question about pump speed at base pressure

- **Ti Sublimation**

- **Cryo pumps**

- **Turbo pumps – cascaded pumps**
Ion pump limitations

Ion pump speed decreases at lower pressures
- Lower nA/Torr at lower pressures
- Re-emission of gasses
- Outgassing from pump body

Adding NEG pumping to ion pumping decreases hydrogen
Pd coated NEG films on inside of ion pumps reduced ultimate pressure to $2-6 \times 10^{-11}$ mbar
JLab UHV ion pump current monitoring

- Ion pumps current varies linearly with pressure as low as 1×10^{-11} Torr
- Real time monitoring of UHV vacuum
- Studying optimal voltage for pumping at low pressures

~10^{-10} Torr
Full Scale
Discharge event in beamline
Base pressure in CEBAF guns

• Why isn’t our chamber pressure as low as calculated?
 – Is outgassing much higher?
 – Is pump speed much lower?
 – Are we unable to measure lower pressures?
• First measured outgassing rate from chamber
 – 1×10^{-12} Torr·L/s·cm2
 – Typical value for baked 304SS

Measured and predicted pressure for 304 SS chambers and ST707 SAES getter modules

Log Pressure (Torr)

Getter Surface area (m2)

Test chambers

CEBAF guns
Pump speed measurements

- Measured pump speed vs. pressure from base pressure of chamber to 2×10^{-10} Torr
- Throughput method
 - conductance limiting orifice
 - RGAs to measure H_2 pressure
- Ultimate pressure method
 - Gas sources: outgassing from walls and gauge
 - Measure with extractor gauge
- Found very good pump speed at higher pressures
 - 500 L/s with bakeout
 - 1150 L/s activated (430 L/s quoted)
- Found drop in pump speed as function of pressure: WHY?

\[
S = \frac{C \left(P_{orf} - P_{orf}' \right) - \left(P_{main} - P_{main}' \right)}{P_{main}} + Q_{wall} + Q_{gauge}
\]
Alternate analysis of pump speed measurement

- $Q = S \times P$
- Plot Q instead of S vs. P
- Linear fit indicates constant pump speed throughout range
- Discrepancy:
 - Problem with throughput vs. pump speed at low pressures?
 - Problem with accurately measuring low pressures?

![Graph showing throughput vs. pressure with linear fit indicating pump speed]

Slope = Pump Speed = 1150 L/s

Throughput Ultimate

M. Stutzman et al. submitted to NIM 2006
XHV Pressure Measurement

- Ionization Gauges
 - Hot Cathode: Extractor, Improved Helmer, Axtran, Modulated BA, spectroscopy and bent beam gauges
 - Cold Cathode: Magnetron, inverted magnetron, double inverted magnetron
 - Laser ionization gauges
- X-ray limits
- Electron stimulated desorption limits
- Gauge outgassing
X-ray limit

Ionized gas molecules collected, proportional to gas pressure

Electrons strike grid, generate x-rays
X-rays striking collector photoemit

Collector current is sum of ionized gas and photoemitted electrons

Bayard-Alpert gauge 1950’s led to UHV measurements
• smaller collector
• modulation techniques
Extractor gauge geometry reduces measurement limits to ~XHV range
Improved Helmer gauge, Watanabe gauges optimize geometry
Extractor Gauge X-ray limits

<table>
<thead>
<tr>
<th>Gauge</th>
<th>X-ray Limit (Torr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Watanabe A</td>
<td>2.1 x 10^{-12}</td>
</tr>
<tr>
<td>Watanabe B</td>
<td>1.6 x 10^{-12}</td>
</tr>
<tr>
<td>Watanabe C</td>
<td>1.9 x 10^{-12}</td>
</tr>
<tr>
<td>JLab A</td>
<td>0.63 x 10^{-12}</td>
</tr>
<tr>
<td>JLab Gun 2</td>
<td>>2 x 10^{-12}</td>
</tr>
<tr>
<td>JLab Gun 3</td>
<td>>2 x 10^{-12}</td>
</tr>
</tbody>
</table>
Extractor gauge comparison

Three extractor gauges
Factor of 8 difference in readings
 • Identical ports
 • Symmetric positions
 • Multiple degas cycles

Divergence in pressure readings below 5×10^{-11} Torr
Electron Stimulated Desorption

- ESD ions
 - Have energy higher than gas phase
 - Energy discrimination
- ESD neutrals
 - Same energy as gas phase
- Hotter grid: less adsorbed gas
 - Electron bombardment
 - More outgassing
 - Resistive heating
 - ESD and outgassing decoupled
- Watanabe heated grid gauges: total pressure and residual gas analyzer
 - BeCu walls
 - Low emissivity
 - High thermal conductivity
 - Cold cathode
 - Decouple grid temperature from filament

Ref: Fumio Watanabe
JVSTA 17 (1999) 3467,
Gauge solutions

• Extractor commercially available
 – X-ray limits can be in the 10^{-13} Torr range (barely XHV)
 – Reasonable residual current caused by ESD due to geometry
 – Work needed to ensure accuracy over time, between gauges

• Improved Helmer gauge used at CERN
 – Frequent pressure measurements in 10^{-14} Torr range quoted

• Watanabe proposes heated filament gauges
 – Separate ESD, outgassing problems

• Laser ionization gauge
 – Ionize gas with powerful laser, count ions: direct gauge of low pressures

Calibration techniques
Calibration Techniques

- Careful calibration needed for measurements below 5×10^{-11} Torr
- Cross calibration with transfer standards
- Dynamic or static expansion methods
 - Relatively complex systems
 - Not common in gauge user laboratories
- Reported XHV pressure measurements should make note of the calibration method

C. Meinke and G. Reich JVST 6 (1967) 356.
Future work at JLab

- Get best available material
- Polish, vacuum fire after welding
- Optimize and calibrate extractor gauges, or
- Replace extractor gauges with better XHV gauge
- UHV ion pump supplies
 - Optimize voltage, geometry for pressure
 - Investigate NEG coatings in ion pumps
- Use cathode lifetime as a relative gauge
- Gauge exchange / cross calibration at different facilities
Future of XHV

- Gauging issues are coming along, but still an art, calibration critical
- Materials exist – many different “recipes” to get very good outgassing rates
- NEG, TiN coatings becoming widespread
- Pumping technologies
 - existing technologies can achieve XHV
 - room for improvement and study
- When XHV becomes routine, high current electron guns, surface science, accelerators, semiconductor industry, and others will benefit